GoogLeNet创新点总结
GoogLeNet是一种深度卷积神经网络架构,于2014年由Google团队提出,是ILSVRC(ImageNet Large Scale Visual Recognition Challenge)比赛的冠军模型,其创新点主要集中在以下几个方面:
Inception模块: GoogLeNet引入了Inception模块,该模块使用不同大小的卷积核和池化层来捕获不同尺度的特征。Inception模块内部通过多个并行的卷积层和池化层来处理输入数据,然后将它们的输出进行拼接,从而增加了网络对不同尺度特征的感知能力。这种结构有助于提高网络的表达能力,同时减少了参数数量。
import torch.nn as nn
import torch
import torch.nn.functional as F'''step1: 写一个包含卷积层和relu激活函数模块的类'''
class Conv_relu(nn.Module):def __init__(self,in_channels,out_channels,**kwargs):super(Conv_relu, self).__init__()self.conv=nn.Conv2d(in_channels,out_channels,**kwargs)self.relu=nn.ReLU(inplace=True)def forward(self,x):x=self.conv(x)x=self.relu(x)return x'''step2: 构建Inception模块,包含4个分支branch1:1×1卷积branch2:1×1卷积降维-->3×3卷积branch3:1×1卷积将为-->5×5卷积branch4:3×3最大池化-->1×1降维
'''
class Inception(nn.Module):def __init__(self,in_channels,out_channels1x1,reduce_channels3x3,out_channels3x3,reduce_channels5x5,out_channels5x5,out_channels1x1_pool,):super(Inception, self).__init__()#branch1:1×1卷积self.branch1=Conv_relu(in_channels,out_channels1x1,kernel_size=1)#branch2:1×1卷积降维-->3×3卷积self.branch2 =nn.Sequential(Conv_relu(in_channels, reduce_channels3x3, kernel_size=1),Conv_relu(reduce_channels3x3,out_channels3x3,kernel_size=3,padding=1))#branch3:1×1卷积将为-->5×5卷积self.branch3 =nn.Sequential(Conv_relu(in_channels, reduce_channels5x5, kernel_size=1),Conv_relu(reduce_channels5x5,out_channels5x5,kernel_size=5,padding=2))#branch4:3×3最大池化-->1×1降维self.branch4 =nn.Sequential(nn.MaxPool2d(kernel_size=3,stride=1,padding=1),Conv_relu(in_channels,out_channels1x1_pool,kernel_size=1))def forward(self,x):x1=self.branch1(x)x2 = self.branch2(x)x3 = self.branch3(x)x4 = self.branch4(x)x=torch.cat([x1,x2,x3,x4],dim=1)return x# return x1,x2,x3,x4,xif __name__ == '__main__':inc_=Inception(192, 64, 96, 128, 16, 32, 32)device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')inc_.to(device)input_tensor=torch.randn(1,192,64,64).to(device)# out1,out2,out3,out4,out=inc_(input_tensor)out = inc_(input_tensor)# print('branch1特征图尺寸:', out1.size())# print('branch2特征图尺寸:', out2.size())# print('branch3特征图尺寸:', out3.size())# print('branch4特征图尺寸:', out4.size())print('拼接后的特征图尺寸:', out.size())
1x1卷积的使用: GoogLeNet在Inception模块中广泛使用了1x1卷积。1x1卷积可以用来进行特征的线性组合,从而降低特征维度,减少计算负担。这种技术被称为“瓶颈结构”,可以在不引入过多计算负担的情况下增加网络的深度和宽度。
Global Average Pooling(全局平均池化): 在传统的卷积神经网络中,通常使用全连接层来进行分类,这会导致大量的参数和计算量。GoogLeNet使用了全局平均池化来替代全连接层,通过对特征图的所有通道进行平均池化,生成一个特征向量,然后使用一个softmax分类器进行分类。这种做法减少了参数数量,防止过拟合,并降低了计算复杂性。
辅助分类器(Auxiliary Classifiers): GoogLeNet引入了两个辅助分类器,分别连接到中间层的不同位置。这些辅助分类器在训练过程中引入了额外的损失函数,帮助网络更快地进行训练。在测试阶段,这些辅助分类器不起作用,只有主分类器的输出被使用。这种结构有助于缓解梯度消失问题,促进梯度在网络中的传播。
# 辅助分类器
import torch.nn as nn
import torch
import torch.nn.functional as Fclass Aux_classifier(nn.Module):def __init__(self,in_channels,num_classes):super(Aux_classifier, self).__init__()self.avgpool=nn.AvgPool2d(kernel_size=5, stride=3)self.conv=Conv_relu(in_channels,128)self.fc1 = nn.Linear(2048, 1024)self.fc2 = nn.Linear(1024, num_classes)def forward(self,x):x=self.avgpool(x)x=self.conv(x)x=torch.flatten(x,1)x=F.dropout(x,0.5,training=self.training)x=F.relu(self.fc1(x),inplace=True)x=F.dropout(x,0.5,training=self.training)x=self.fc2(x)return x
总之,GoogLeNet通过引入Inception模块、1x1卷积、全局平均池化以及辅助分类器等创新点,成功地构建了一个更深、更宽的网络,具备强大的特征提取和分类能力,并在当时的图像分类竞赛中取得了显著的成绩。这些创新点也为后续深度神经网络的设计提供了重要的启示。
相关文章:
GoogLeNet创新点总结
GoogLeNet是一种深度卷积神经网络架构,于2014年由Google团队提出,是ILSVRC(ImageNet Large Scale Visual Recognition Challenge)比赛的冠军模型,其创新点主要集中在以下几个方面: Inception模块&#…...
不同路径1、2、3合集(980. 不同路径 III)
不同路径一 矩形格,左上角 到 右下角。 class Solution {int [] directX new int[]{-1,1,0,0};int [] directY new int[]{0,0,-1,1};int rows;int cols;public int uniquePathsIII(int[][] grid) {if (grid null || grid.length 0 || grid[0].length 0) {ret…...
【云原生】Yaml文件详解
目录 一、YAML 语法格式1.1查看 api 资源版本标签1.2 写一个yaml文件demo1.3 详解k8s中的port 一、YAML 语法格式 Kubernetes 支持 YAML 和 JSON 格式管理资源对象JSON 格式:主要用于 api 接口之间消息的传递YAML格式:用于配置和管理,YAML 是…...
ffmpeg下载安装教程
ffmpeg官网下载地址https://ffmpeg.org/download.html 这里以windows为例,鼠标悬浮到windows图标上,再点击 Windows builds from gyan.dev 或者直接打开 https://www.gyan.dev/ffmpeg/builds/ 下载根据个人需要下载对应版本 解压下载的文件,并复制bin所在目录 新打开一个命令…...
uniapp之当你问起“tab方法触发时eventchange也跟着触发了咋办”时
我相信没有大佬会在这个问题上卡两个小时吧,记下来大家就当看个乐子了。 当时问题就是,点击tab头切换的时候,作为tab滑动事件的eventchange同时触发了,使得接口请求了两次 大概是没睡好,我当时脑子老想着怎么阻止它冒…...
TS 踩坑之路(四)之 Vue3
一、在使用定义默认值withDefaults和defineProps 组合时,默认值设置报错 代码案例 报错信息 不能将类型“{ isBackBtn: false; }”分配给类型“(props: PropsType) > RouteMsgType”。 对象字面量只能指定已知属性,并且“isBackBtn”不在类型“(pro…...
【音视频】edge与chrome在性能上的比较
目录 结论先说 实验 结论 实验机器的cpu配置 用EDGE拉九路编辑 google拉五路就拉不出来了 资源使用情况 edge报错编辑 如果服务器端 性能也满 了,就会不回复;验证方式 手动敲 8081,不回应。 结论先说 实验 用chrome先拉九路&#…...
Docker Compose编排部署LNMP服务
目录 安装docker-ce 阿里云镜像加速器 文件 启动 安装docker-ce [rootlocalhost ~]# wget -O /etc/yum.repos.d/CentOS-Base.repo http://mirrors.aliyun.com/repo/Centos-7.repo --2023-08-03 18:34:32-- http://mirrors.aliyun.com/repo/Centos-7.repo 正在解析主机 m…...
git使用(常见用法)
一.下载git git官方下载跳转 安装简单,有手就行 二. git的简单使用 1. 连接远程仓库 #初始化 git init #配置账户 git config --global user.name “输入你的用户名” git config --global user.email “输入你的邮箱” git config --list #--q退出 #配置验证邮箱 ssh-key…...
用例拆分情况考虑方案
文章目录 1、方案一方案概述方案分析(1) 把对应图商地图的逻辑给分离开(2) 要使用命令行的方式执行方法 2、方案二3、最终决定 1、方案一 方案概述 每个图商(GD、BD、自建)拆分成单独的类 把参数化的几个图商类别拆分成对应的图商类,在每个类…...
一文搞懂IS-IS报文通用格式
报文格式 IS-IS报文是直接封装在数据链路层的帧结构中的。PDU可以分为两个部分,报文头和变长字段部分。其中头部又可分为通用头部和专用头部。对于所有PDU来说,通用报头都是相同的,但专用报头根据PDU类型不同而有所差别。 IS-IS的PDU有4种类…...
位置参数 关键字参数
在Python中,函数参数可以按照位置或关键字来传递。这导致了两种主要的参数类型:位置参数和关键字参数。 位置参数: 这是最常见的参数类型,当我们调用函数时,传递给函数的参数值是按照它们的位置来确定的。例如,def fun…...
【果树农药喷洒机器人】Part5:基于深度相机与分割掩膜的果树冠层体积探测方法
文章目录 一、引言二、树冠体积测量对比方法2.1冠层体积人工测量法2.2冠层体积拟合测量法 三、基于深度相机与分割掩膜探测树冠体积方法3.1像素值与深度值的转换3.2树冠体积视觉探测法3.3实验分析 总结 一、引言 果树靶标探测是实现农药精准喷施的关键环节,本章以果…...
生活小妙招之UE custom Decal
因为这几年大部分时间都在搞美术,所以博客相关的可能会鸽的比较多,阿巴阿巴 https://twitter.com/Tuatara_Games/status/1674034744084905986 之前正好看到一个贴花相关的小技巧,正好做一个记录,也在这个的基础上做一些小的拓展…...
DAY02_Spring—第三方资源配置管理Spring容器Spring注解开发Spring整合Mybatis和Junit
目录 一 第三方资源配置管理1 管理DataSource连接池对象问题导入1.1 管理Druid连接池1.2 管理c3p0连接池 2 加载properties属性文件问题导入2.1 基本用法2.2 配置不加载系统属性2.3 加载properties文件写法 二 Spring容器1 Spring核心容器介绍问题导入1.1 创建容器1.2 获取bean…...
Icon图标有哪些在线设计的工具推荐
虽然icon图标相对较小,但icon图标在设计中非常重要。高质量的icon图标通常可以决定设计工作的质量。高质量的在线生产icon工具可以提高设计师图标设计的效率。此外,优秀的图标设计师还可以让设计师快速开始图标设计工作。本文为您选择了五种在线生成icon…...
深度学习环境安装依赖时常见错误解决
1.pydantic 安装pydantic时报以下错误: ImportError: cannot import name Annotated from pydantic.typing (C:\Users\duole\anaconda3\envs\vrh\lib\site-packages\pydantic\typing.py) 这个是版本错误,删除装好的版本,重新指定版本安装就…...
opencv基础47 查找图像轮廓cv2.findContours()详解
什么是图像轮廓? 图像轮廓是指图像中物体边缘的连续性曲线。在计算机视觉和图像处理中,轮廓通常被用于检测物体、分割图像以及提取物体特征。 图像轮廓是由一系列连续的像素点组成,这些像素点位于物体边界上。轮廓的特点是在物体和背景之间的…...
Splunk Enterprise for mac(可视化数据分析软件)详细安装教程
Splunk Enterprise for Mac是一款可视化数据分析软件,为你提供强大的搜索、 分析和可视化功能,可以帮助您获得有价值的业务情报,从你机器生成的数据。还在等什么?有需要的朋友,欢迎前来下载! 实时监测和搜…...
如何实现环卫项目运营的数字化管理,达到企业降本增效的目的?
数字环卫是指利用数字技术和数据驱动的方法来改善环卫流程和管理。数字环卫的底层逻辑在于利用技术来优化运营、提高效率并降低环卫项目管理成本。如何实现环卫工程运营数字化管理,达到降本增效的目标: 1.数据收集和分析:实施数据收集机制&a…...
基于算法竞赛的c++编程(28)结构体的进阶应用
结构体的嵌套与复杂数据组织 在C中,结构体可以嵌套使用,形成更复杂的数据结构。例如,可以通过嵌套结构体描述多层级数据关系: struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...
测试微信模版消息推送
进入“开发接口管理”--“公众平台测试账号”,无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息: 关注测试号:扫二维码关注测试号。 发送模版消息: import requests da…...
Ubuntu系统下交叉编译openssl
一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机:Ubuntu 20.04.6 LTSHost:ARM32位交叉编译器:arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...
java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别
UnsatisfiedLinkError 在对接硬件设备中,我们会遇到使用 java 调用 dll文件 的情况,此时大概率出现UnsatisfiedLinkError链接错误,原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用,结果 dll 未实现 JNI 协…...
OkHttp 中实现断点续传 demo
在 OkHttp 中实现断点续传主要通过以下步骤完成,核心是利用 HTTP 协议的 Range 请求头指定下载范围: 实现原理 Range 请求头:向服务器请求文件的特定字节范围(如 Range: bytes1024-) 本地文件记录:保存已…...
在Ubuntu中设置开机自动运行(sudo)指令的指南
在Ubuntu系统中,有时需要在系统启动时自动执行某些命令,特别是需要 sudo权限的指令。为了实现这一功能,可以使用多种方法,包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法,并提供…...
Mac下Android Studio扫描根目录卡死问题记录
环境信息 操作系统: macOS 15.5 (Apple M2芯片)Android Studio版本: Meerkat Feature Drop | 2024.3.2 Patch 1 (Build #AI-243.26053.27.2432.13536105, 2025年5月22日构建) 问题现象 在项目开发过程中,提示一个依赖外部头文件的cpp源文件需要同步,点…...
OPENCV形态学基础之二腐蚀
一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...
计算机基础知识解析:从应用到架构的全面拆解
目录 前言 1、 计算机的应用领域:无处不在的数字助手 2、 计算机的进化史:从算盘到量子计算 3、计算机的分类:不止 “台式机和笔记本” 4、计算机的组件:硬件与软件的协同 4.1 硬件:五大核心部件 4.2 软件&#…...
springboot 日志类切面,接口成功记录日志,失败不记录
springboot 日志类切面,接口成功记录日志,失败不记录 自定义一个注解方法 import java.lang.annotation.ElementType; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; import java.lang.annotation.Target;/***…...
