用香港服务器建网站做微商/北京十大教育培训机构排名
文章目录
- torch.nn.PixelShuffle
- 直观解释
- 官方文档
- torch.nn.PixelUnshuffle
- 直观解释
- 官方文档
torch.nn.PixelShuffle
直观解释
PixelShuffle是一种上采样方法,它将形状为 ( ∗ , C × r 2 , H , W ) (∗, C\times r^2, H, W) (∗,C×r2,H,W)的张量重新排列转换为形状为 ( ∗ , C , H × r , W × r ) (∗, C, H\times r, W\times r) (∗,C,H×r,W×r)的张量:
举个例子
输入的张量大小是(1,8,2,3)
,PixelShuffle的 缩放因子是r=2
。
import torch
ps=torch.nn.PixelShuffle(2)
input=torch.arange(0,48).view(1,8,2,3)
print(input)
output=ps(input)
print(output)
print(output.shape)
如下图可以看到,PixelShuffle是把输入通道按照缩放因子r^2
进行划分成8/(2^2)=2
组。
也就是输入的第一组(前4个
通道)中的元素,每次间隔r=2
交错排列,合并成输出的第一个通道维度。
输入的第二组(后4个通道)中的元素,每次间隔r=2
交错排列,合并成输出通道的第二个维度。
输入的大小为(batchsize,in_channel,in_height,in_width)=(1,8,2,3)
输出的大小为(batchsize,out_channel,out_height,out_width)(1,2,4,6)
各个维度的变化规律如下:
batchsize
不变;
out_channel=in_channel/(r^2)
out_height=in_height*r
out_width=in_width*r
官方文档
CLASS
torch.nn.PixelShuffle(upscale_factor)
-
功能: 把大小为 ( ∗ , C × r 2 , H , W ) (*,C\times r^2,H,W) (∗,C×r2,H,W)的张量重新排列为大小为 ( ∗ , C , H × r , W × r ) (*,C,H\times r,W\times r) (∗,C,H×r,W×r) , 其中 r r r 是 upscale factor 。
这个操作对于实现步长为 1 r \frac {1}{r} r1的efficient sub-pixel convolution有用。
-
参数
- upscale_factor(int) : 增加空间分辨率的因子
-
形状
-
输入: ( ∗ , C i n , H i n , W i n ) (*,C_{in},H_{in},W_{in}) (∗,Cin,Hin,Win) ,其中 ∗ * ∗ 是 0 或者batch大小
-
输出: ( ∗ , C o u t , H o u t , W o u t ) (*,C_{out},H_{out},W_{out}) (∗,Cout,Hout,Wout) , 其中
C out = C in ÷ u p s c a l e _ f a c t o r 2 H out = H in × u p s c a l e _ f a c t o r W out = W in × u p s c a l e _ f a c t o r C_{\text {out }}=C_{\text {in }} \div upscale\_factor ^2 \\ H_{\text {out }}=H_{\text {in }} \times upscale\_factor \\ W_{\text {out }}=W_{\text {in }} \times upscale\_factor Cout =Cin ÷upscale_factor2Hout =Hin ×upscale_factorWout =Win ×upscale_factor
-
-
例子
>>> pixel_shuffle = nn.PixelShuffle(3)
>>> input = torch.randn(1, 9, 4, 4)
>>> output = pixel_shuffle(input)
>>> print(output.size())
torch.Size([1, 1, 12, 12])
torch.nn.PixelUnshuffle
直观解释
PixelUnshuffle就是PixelShuffle的逆操作。
import torch
pus=torch.nn.PixelUnshuffle(2)
input_restore=pus(putput)
print(input_restore)
print(input_restore.shape)
print(input_restore==input) # input_restore和input一样
官方文档
CLASS
torch.nn.PixelUnshuffle(downscale_factor)
-
功能: 是PixelShuffle的逆操作,把大小为 ( ∗ , C , H × r , W × r ) (*,C,H\times r,W\times r) (∗,C,H×r,W×r)的张量重组成大小为 ( ∗ , C × r , H , W ) (*,C\times r,H,W) (∗,C×r,H,W)的张量。其中 r r r 是downscale factor。
-
参数:
downscale_factor (int)
: 降低空间分辨率的因子。
-
形状:
-
输入: ( ∗ , C i n , H i n , W i n ) (*,C_{in},H_{in},W_{in}) (∗,Cin,Hin,Win), 其中 ∗ * ∗ 是 0 或者batch大小
-
输出: ( ∗ , C o u t , H o u t , W o u t ) (*,C_{out},H_{out},W_{out}) (∗,Cout,Hout,Wout), 其中
C out = C in × downscale _ factor 2 H out = H in ÷ downscale _ factor W out = W in ÷ downscale _ factor \begin{aligned}& C_{\text {out }}=C_{\text {in }} \times \text { downscale } \_ \text {factor }{ }^2 \\& H_{\text {out }}=H_{\text {in }} \div \text { downscale } \_ \text {factor } \\& W_{\text {out }}=W_{\text {in }} \div \text { downscale } \_ \text {factor }\end{aligned} Cout =Cin × downscale _factor 2Hout =Hin ÷ downscale _factor Wout =Win ÷ downscale _factor
-
-
例子
>>> pixel_unshuffle = nn.PixelUnshuffle(3)
>>> input = torch.randn(1, 1, 12, 12)
>>> output = pixel_unshuffle(input)
>>> print(output.size())
torch.Size([1, 9, 4, 4])
相关文章:

【torch.nn.PixelShuffle】和 【torch.nn.UnpixelShuffle】
文章目录 torch.nn.PixelShuffle直观解释官方文档 torch.nn.PixelUnshuffle直观解释官方文档 torch.nn.PixelShuffle 直观解释 PixelShuffle是一种上采样方法,它将形状为 ( ∗ , C r 2 , H , W ) (∗, C\times r^2, H, W) (∗,Cr2,H,W)的张量重新排列转换为形状为…...

Rocky9 KVM网桥的配置
KVM的默认网络模式为NAT,借助宿主机模式上网,现在我们来改成桥接模式,这样外界就可以直接和宿主机里的虚拟机通讯了。 Bridge方式即虚拟网桥的网络连接方式,是客户机和子网里面的机器能够互相通信。可以使虚拟机成为网络中具有独立IP的主机。 桥接网络(也叫物理设备共享…...

爬虫013_函数的定义_调用_参数_返回值_局部变量_全局变量---python工作笔记032
然后再来看函数,可以避免重复代码 可以看到定义函数以及调用函数...

将.doc文档的默认打开方式从WPS修改为word office打开方式的具体方法(以win 10 操作系统为例)
将.doc文档的默认打开方式从WPS修改为word office打开方式的具体方法(以win 10 操作系统为例) 随着近几年WPS软件的不断完善和丰富,在某些方面取得了具有特色的优势。在平时编辑.doc文档时候也常常用到wps软件,不过WPS文献也存在…...

如何搭建个人的GPT网页服务
写在前面 在创建个人的 GPT网页之前,我登录了 Git 并尝试了一些开源项目,但是没有找到满足我个性化需求的设计。虽然许多收费的 GPT网页提供了一些免费额度,足够我使用,但是公司的安全策略会屏蔽这些网页。因此,我决定…...

[QCM6125][Android13] 默认关闭SELinux权限
文章目录 开发平台基本信息问题描述解决方法 开发平台基本信息 芯片: QCM6125 版本: Android 13 kernel: msm-4.14 问题描述 正常智能硬件设备源码开发,到手的第一件事就是默认关闭SELinux权限,这样能够更加方便于调试功能。 解决方法 --- a/QSSI.1…...

【jvm】jvm发展历程
目录 一、Sun Classic VM二、Exact VM三、HotSpot VM四、JRockit五、J9六、KVM、CDC、CLDC七、Azul VM八、Liquid VM九、Apache Harmony十、Microsoft JVM十一、Taobao JVM十二、Dalvik VM 一、Sun Classic VM 1.1996年java1.0版本,sun公司发布了sun classic vm虚拟…...

Dubbo3.0 Demo
将SpringBoot工程集成Dubbo 1.创建父工程 2.创建子工程consumer,provider 3.初始化工程 4.引入依赖 在provider和consumer中引入dubbo依赖 <dependency><groupId>org.apache.dubbo</groupId><artifactId>dubbo-spring-boot-starter</a…...

源码分析——ConcurrentHashMap源码+底层数据结构分析
文章目录 1. ConcurrentHashMap 1.71. 存储结构2. 初始化3. put4. 扩容 rehash5. get 2. ConcurrentHashMap 1.81. 存储结构2. 初始化 initTable3. put4. get 3. 总结 1. ConcurrentHashMap 1.7 1. 存储结构 Java 7 中 ConcurrentHashMap 的存储结构如上图,Concurr…...

R语言中的函数25:paste,paste0
文章目录 介绍paste0()实例 paste()实例 介绍 paste0()和paste()函数都可以实现对字符串的连接,paste0是paste的简化版。 paste0() paste (..., sep " ", collapse NULL, recycle0 FALSE)… one or more R objects, to be converted to character …...

(八)穿越多媒体奇境:探索Streamlit的图像、音频与视频魔法
文章目录 1 前言2 st.image:嵌入图像内容2.1 图像展示与描述2.2 调整图像尺寸2.3 使用本地文件或URL 3 st.audio:嵌入音频内容3.1 播放音频文件3.2 生成音频数据播放 4 st.video:嵌入视频内容4.1 播放视频文件4.2 嵌入在线视频 5 结语&#x…...

CAD练习——绘制房子平面图
首先还是需要设置图层、标注、文字等 XL:构造线 用构造线勾勒大致的轮廓: 使用多线命令:ML 绘制墙壁 可以看到有很多交叉点的位置 用多线编辑工具将交叉点处理 有一部分处理不了的,先讲多线分解,然后用修剪打理&…...

spring 面试题
一、Spring面试题 专题部分 1.1、什么是spring? Spring是一个轻量级Java开发框架,最早有Rod Johnson创建,目的是为了解决企业级应用开发的业务逻辑层和其他各层的耦合问题。它是一个分层的JavaSE/JavaEE full-stack(一站式)轻量…...

Springboot项目集成Durid数据源和P6Spy以及dbType not support问题
项目开发阶段,mybatis的SQL打印有占位符,调试起来还是有点麻烦,随想整合P6Spy打印可以直接执行的SQL,方便调试,用的Durid连接池。 Springboot项目集成Durid <dependency><groupId>com.alibaba</group…...

安卓如何卸载应用
卸载系统应用 首先需要打开手机的开发者选项,启动usb调试。 第二步需要在电脑上安装adb命令,喜欢的话还可以将它加入系统path。如果不知道怎么安装,可以从这里下载免安装版本。 第三步将手机与电脑用数据线连接,注意是数据线&a…...

【云原生|Kubernetes】14-DaemonSet资源控制器详解
【云原生|Kubernetes】14-DaemonSet资源控制器详解 文章目录 【云原生|Kubernetes】14-DaemonSet资源控制器详解简介典型用法DaemonSet语法规则Pod模板Pod 选择算符在选定的节点上运行 Pod DaemonSet的 Pods 是如何被调度的污点和容忍度DaemonSet更新和回滚DaemonSet更新策略执…...

基于 Guava Retry 在Spring封装一个重试功能
pom依赖 <dependency><groupId>com.github.rholder</groupId><artifactId>guava-retrying</artifactId><version>2.0.0</version> </dependency> <dependency><groupId>org.springframework.boot</groupId>…...

适用HarmonyOS 3.1版本及以上的应用及服务开发工具 DevEco Studio 3.1.1 Release 安装
文章目录 安装步骤1.下载安装包2.安装成功后,初次运行studio2.1 配置node与ohpm的环境2.2安装sdk2.3等待安装结束 3.创建项目3.1 点击Create Project3.2 选择一个空项目3.3 项目配置3.4 Finish、等待依赖下载完毕3.5 项目创建完成 tip 提示4.配置运行环境4.1 真机运…...

[信号与系统系列] 正弦振幅调制之差拍信号
当将具有不同频率的两个正弦曲线相乘时,可以创建一个有趣的音频效果,称为差拍音符。这种现象听起来像颤音,最好通过选择一个频率非常小的信号与和另一个频率大约1KHz的信号,把二者混合从而听到。一些乐器能够自然产生差拍音符。使…...

vb+SQL航空公司管理系统设计与实现
航空公司管理信息系统 一个正常营运的航空公司需要管理所拥有的飞机、航线的设置、客户的信息等,更重要的还要提供票务管理。面对各种不同种类的信息,需要合理的数据库结构来保存数据信息以及有效的程序结构支持各种数据操作的执行。 本设计讲述如何建立一个航空公司管理信…...

python爬取网页视频
Python是一种功能强大的编程语言,被广泛应用于网络爬虫、数据分析和人工智能等领域。在网络爬虫中,常常需要从网页中获取视频或者录制网页视频。下面将介绍如何使用Python来录制网页视频。 import time from selenium import webdriver # 创建驱动程序 d…...

数据挖掘具体步骤
数据挖掘具体步骤 1、理解业务与数据 2、准备数据 数据清洗: 缺失值处理: 异常值: 数据标准化: 特征选择: 数据采样处理: 3、数据建模 分类问题: 聚类问题: 回归问题 关联分析 集成学习 image B…...

react class与hooks区别
在React中,有两种主要的方式来管理组件的状态和生命周期:Class 组件和 Hooks。 Class 组件: Class 组件是 React 最早引入的方式,它是基于 ES6 class 的语法来创建的。Class 组件包含了生命周期方法,可以用来处理组件…...

Python爬虫思维:异常处理与日志记录
作为一名专业的爬虫代理供应商,我们经常会看见各种各样的爬虫异常情况。网络请求超时、页面结构变化、反爬虫机制拦截等问题时常出现在客户的工作中。 在这篇文章中,我将和大家分享一些关于异常处理与日志记录的思维方法。通过合理的异常处理和有效的日志…...

(十六)大数据实战——安装使用mysql版的hive服务
前言 hive默认使用的是内嵌据库derby,Derby 是一个嵌入式数据库,可以轻松地以库的形式集成到应用程序中。它不需要独立的服务器进程,所有的数据存储在应用程序所在的文件系统中。为了支持hive服务更方便的使用,我们使用mysql数据…...

【信号生成器】从 Excel 数据文件创建 Simulink 信号生成器块研究(Simulink)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...

【UE4 RTS】01-Camera SetUp
UE版本:4.24.3 前言 本篇主要完成游戏模式、玩家控制器和玩家控制的Pawn的设置,下一篇介绍如何实现Pawn的移动 步骤 1. 首先创建一个俯视角游戏模板 2. 首先删除“TopDownCharacter”, 3. 新建一个文件夹命名为“RTS_Toturial” 在文件夹…...

Mirror网络库 | 说明
此篇为上文,下篇:Mirror网络库 | 实战 一、介绍 基于UNET,从2014年经过9年实战测试;服务器和客户端是一个项目;使用NetworkBehaviour而不是MonoBehaviour,还有NetworkServer和NetworkClient;Mi…...

分布式异步任务处理组件(九)
最近完成了网络通信模块的一些基本代码实现,这里记录一些关于类和接口设计的问题和思考;另外进度可能会受阻,之前不知道猴年马月投的简历现在开始邀约面试了,包括今天在内的三天都有一场面试--主要是今天中午的面试过后两分钟HR就…...

[excel]vlookup函数对相同的ip进行关联
一、需求(由于ip不可泄漏所以简化如下) 有两个sheet: 找到sheet1在sheet2中存在的ip,也就是找到有漏洞的ip 二、实现 vlookup函数有4个参数 第一个:当前表要匹配的列,选择第一个sheet当前行需要处理的ip即可 第二个:第二个shee…...