中山专业做网站的公司/营销技巧
目录
一、redis的高可用
1)redis高可用的概念
2)Redis的高可用技术
二、redis主从复制
1)主从复制的作用
2)主从复制流程
三、redis一主二从的部署
实验组件
实验步骤
环境准备
修改内核参数
安装 Redis
创建redis工作目录
环境变量
定义systemd服务管理脚本
修改 Redis 配置文件(Master节点操作)
修改 Redis 配置文件(Slave节点操作)
验证主从效果
在Master节点上看日志:
在Master节点上验证从节点:
三、Redis哨兵模式
1)哨兵模式的作用
2)哨兵结构
3)故障转移机制
4)主节点的选举
5)搭建Redis 哨兵模式
修改 Redis 哨兵模式的配置文件(所有节点操作)
启动哨兵模式
查看哨兵信息
故障模拟
查看redis-server进程号:
杀死 Master 节点上redis-server的进程号
验证结果
四、Redis 群集模式
1)集群的作用
(1)数据分区
(2)高可用
2)Redis集群的数据分片
3)搭建Redis 群集模式
开启群集功能
启动redis节点
启动集群
测试群集
一、redis的高可用
1)redis高可用的概念
在web服务器中,高可用是指服务器可以正常访问的时间,衡量的标准是在多长时间内可以提供正常服务
高可用的计算公式是1-(宕机时间)/(宕机时间+运行时间)
2个9:99%,一年内宕机时长:1%×365天=3.6524天=87.6h
4个9:99.99%,一年内宕机时长:0.01%×365天=52.56min
5个9:99.999%,一年内宕机时长:0.001%*365天=5.265min
11个9:几乎一年宕机时间只有几秒钟
2)Redis的高可用技术
在Redis中,实现高可用的技术主要包括持久化、主从复制、哨兵和cluster集群
-
持久化: 持久化是最简单的高可用方法(有时甚至不被归为高可用的手段),主要作用是数据备份,即将数据存储在硬盘,保证数据不会因进程退出而丢失
-
主从复制: 主从复制是高可用Redis的基础,哨兵和集群都是在主从复制基础上实现高可用的。主从复制主要实现了数据的多机备份(和同步),以及对于读操作的负载均衡和简单的故障恢复
缺陷:故障恢复无法自动化;写操作无法负载均衡;存储能力受到单机的限制
-
哨兵: 在主从复制的基础上,哨兵实现了自动化的故障恢复。(主挂了,找一个从成为新的主,哨兵节点进行监控)
缺陷:写操作无法负载均衡;存储能力受到单机的限制
-
Cluster集群: 通过集群,Redis解决了写操作无法负载均衡,以及存储能力受到单机限制的问题,实现了较为完善的高可用方案。(6台起步,成双成对,3主3从)
二、redis主从复制
主从复制,是指将一台Redis服务器的数据,复制到其他的Redis服务器。前者称为主节点(Master),后者称为从节点(slave);数据的复制是单向的,只能由主节点到从节点。
默认情况下,每台Redis服务器都是主节点;且一个主节点可以有多个从节点(或没有从节点),但一个从节点只能有一个主节点。
1)主从复制的作用
-
数据冗余: 主从复制实现了数据的热备份,是持久化之外的一种数据冗余方式
-
故障恢复: 当主节点出现问题时,可以由从节点提供服务,实现快速的故障恢复;实际上是一种服务的冗余
-
负载均衡: 在主从复制的基础上,配合读写分离,可以由主节点提供写服务,由从节点提供读服务(即写Redis数据时应用连接主节点,读Redis数据时应用连接从节点),分担服务器负载;尤其是在写少读多的场景下,通过多个从节点分担读负载,可以大大提高Redis服务器的并发量
-
高可用基石: 除了上述作用以外,主从复制还是哨兵和集群能够实施的基础,因此说主从复制是Redis高可用的基础
2)主从复制流程
-
若启动一个slave机器进程,则它会向Master机器发送一个sync command命令,请求同步连接
-
无论是第一次连接还是重新连接,Master机器都会启动一个后台进程,将数据快照保存到数据文件中(执行rdb操作),同时Master还会记录修改数据的所有命令并缓存在数据文件中
-
后台进程完成缓存操作之后,Master机器就会向slave机器发送数据文件,slave端机器将数据文件保存到硬盘上,然后将其加载到内存中,接着Master机器就会将修改数据的所有操作一并发送给slave端机器。若slave出现故障导致宕机,则恢复正常后会自动重新连接
-
Master机器收到slave端机器的连接后,将其完整的数据文件发送给slave端机器,如果Mater同时收到多个slave发来的同步请求,则Master会在后台启动一个进程以保存数据文件,然后将其发送给所有的slave端机器,确保所有的slave端机器都正常
三、redis一主二从的部署
实验组件
主从 | IP地址 |
---|---|
master | 192.168.80.10 |
slave1 | 192.168.80.11 |
slave2 | 192.168.80.12 |
实验步骤
环境准备
systemctl stop firewalld
systemctl disable firewalld
setenforce 0
sed -i 's/enforcing/disabled/' /etc/selinux/config
修改内核参数
vim /etc/sysctl.conf
vm.overcommit_memory = 1
net.core.somaxconn = 2048
sysctl -p
安装 Redis
yum install -y gcc gcc-c++ make
tar zxvf /opt/redis-7.0.9.tar.gz -C /opt/
cd /opt/redis-7.0.9
make
make PREFIX=/usr/local/redis install
#由于Redis源码包中直接提供了 Makefile 文件,所以在解压完软件包后,不用先执行 ./configure 进行配置,可直接执行 make 与 make install 命令进行安装
创建redis工作目录
mkdir /usr/local/redis/{conf,log,data}
cp /opt/redis-7.0.9/redis.conf /usr/local/redis/conf/
useradd -M -s /sbin/nologin redis
chown -R redis.redis /usr/local/redis/
环境变量
vim /etc/profile
PATH=$PATH:/usr/local/redis/bin #增加一行
source /etc/profile
定义systemd服务管理脚本
vim /usr/lib/systemd/system/redis-server.service
[Unit]
Description=Redis Server
After=network.target[Service]
User=redis
Group=redis
Type=forking
TimeoutSec=0
PIDFile=/usr/local/redis/log/redis_6379.pid
ExecStart=/usr/local/redis/bin/redis-server /usr/local/redis/conf/redis.conf
ExecReload=/bin/kill -s HUP $MAINPID
ExecStop=/bin/kill -s QUIT $MAINPID
PrivateTmp=true[Install]
WantedBy=multi-user.target
修改 Redis 配置文件(Master节点操作)
vim /usr/local/redis/conf/redis.conf
bind 0.0.0.0 #87行,修改监听地址为0.0.0.0
protected-mode no #111行,将本机访问保护模式设置no
port 6379 #138行,Redis默认的监听6379端口
daemonize yes #309行,设置为守护进程,后台启动
pidfile /usr/local/redis/log/redis_6379.pid #341行,指定 PID 文件
logfile "/usr/local/redis/log/redis_6379.log" #354行,指定日志文件
dir /usr/local/redis/data #504行,指定持久化文件所在目录
#requirepass abc123 #1037行,可选,设置redis密码
appendonly yes #1380行,开启AOF
systemctl restart redis-server.service
修改 Redis 配置文件(Slave节点操作)
vim /usr/local/redis/conf/redis.conf
bind 0.0.0.0 #87行,修改监听地址为0.0.0.0
protected-mode no #111行,将本机访问保护模式设置no
port 6379 #138行,Redis默认的监听6379端口
daemonize yes #309行,设置为守护进程,后台启动
pidfile /usr/local/redis/log/redis_6379.pid #341行,指定 PID 文件
logfile "/usr/local/redis/log/redis_6379.log" #354行,指定日志文件
dir /usr/local/redis/data #504行,指定持久化文件所在目录
#requirepass abc123 #1037行,可选,设置redis密码
appendonly yes #1380行,开启AOF
replicaof 192.168.80.10 6379 #528行,指定要同步的Master节点IP和端口
#masterauth abc123 #535行,可选,指定Master节点的密码,仅在Master节点设置了requirepass
systemctl restart redis-server.service
验证主从效果
在Master节点上看日志:
tail -f /usr/local/redis/log/redis_6379.log
Replica 192.168.80.11:6379 asks for synchronization
Replica 192.168.80.12:6379 asks for synchronization
Synchronization with replica 192.168.80.11:6379 succeeded
Synchronization with replica 192.168.80.12:6379 succeeded
在Master节点上验证从节点:
redis-cli info replication
# Replication
role:master
connected_slaves:2
slave0:ip=192.168.80.11,port=6379,state=online,offset=1246,lag=0
slave1:ip=192.168.80.12,port=6379,state=online,offset=1246,lag=1
三、Redis哨兵模式
-
主从切换技术的方法是:当服务器宕机后,需要手动一台从机切换为主机,这需要人工干预,不仅费时费力而且还会造成一段时间内服务不可用。为了解决主从复制的缺点,就有了哨兵机制
-
哨兵的核心功能:在主从复制的基础上,哨兵引入了主节点的自动故障转移
1)哨兵模式的作用
-
监控:哨兵会不断地检查主节点和从节点是否运作正常
-
自动故障转移:当主节点不能正常工作时,哨兵会开始自动故障转移操作,它会将失效主节点的其中一个从节点升级为新的主节点,并让其它从节点改为复制新的主节点
-
通知(提醒):哨兵可以将故障转移的结果发送给客户端
2)哨兵结构
由两部分组成,哨兵节点和数据节点:
-
哨兵节点:哨兵系统由一个或多个哨兵节点组成,哨兵节点是特殊的redis节点,不存储数据
-
数据节点:主节点和从节点都是数据节点
3)故障转移机制
1.由哨兵节点定期监控发现主节点是否出现了故障 每个哨兵节点每隔1秒会向主节点、从节点及其它哨兵节点发送一次ping命令做一次心跳检测。如果主节点在一定时间范围内不回复或者是回复一个错误消息,那么这个哨兵就会认为这个主节点主观下线了(单方面的)。当超过半数哨兵节点认为该主节点主观下线了,这样就客观下线了
2.当主节点出现故障,此时哨兵节点会通过Raft算法(选举算法)实现选举机制共同选举出一个哨兵节点为leader,来负责处理主节点的故障转移和通知。所以整个运行哨兵的集群的数量不得少于3个节点
3.由leader哨兵节点执行故障转移,过程如下:
-
将某一个从节点升级为新的主节点,让其它从节点指向新的主节点
-
若原主节点恢复也变成从节点,并指向新的主节点
-
通知客户端主节点已经更换
需要特别注意的是,客观下线是主节点才有的概念;如果从节点和哨兵节点发生故障,被哨兵主观下线后,不会再有后续的客观下线和故障转移操作
4)主节点的选举
-
过滤掉不健康的(已下线的),没有回复哨兵 ping 响应的从节点
-
选择配置文件中从节点优先级配置最高的。(replica-priority,默认值为100)
-
选择复制偏移量最大,也就是复制最完整的从节点
哨兵的启动依赖于主从模式,所以须把主从模式安装好的情况下再去做哨兵模式
5)搭建Redis 哨兵模式
Master节点:192.168.80.10
Slave1节点:192.168.80.11
Slave2节点:192.168.80.12
systemctl stop firewalld
setenforce 0
修改 Redis 哨兵模式的配置文件(所有节点操作)
cp /opt/redis-7.0.9/sentinel.conf /usr/local/redis/conf/
chown redis.redis /usr/local/redis/conf/sentinel.conf
vim /usr/local/redis/conf/sentinel.conf
protected-mode no #6行,关闭保护模式
port 26379 #10行,Redis哨兵默认的监听端口
daemonize yes #15行,指定sentinel为后台启动
pidfile /usr/local/redis/log/redis-sentinel.pid #20行,指定 PID 文件
logfile "/usr/local/redis/log/sentinel.log" #25行,指定日志存放路径
dir /usr/local/redis/data #54行,指定数据库存放路径
sentinel monitor mymaster 192.168.80.10 6379 2 #73行,修改 指定该哨兵节点监控192.168.80.10:6379这个主节点,该主节点的名称是mymaster,最后的2的含义与主节点的故障判定有关:至少需要2个哨兵节点同意,才能判定主节点故障并进行故障转移
#sentinel auth-pass mymaster abc123 #76行,可选,指定Master节点的密码,仅在Master节点设置了requirepass
sentinel down-after-milliseconds mymaster 3000 #114行,判定服务器down掉的时间周期,默认30000毫秒(30秒)
sentinel failover-timeout mymaster 180000 #214行,同一个sentinel对同一个master两次failover之间的间隔时间(180秒)
启动哨兵模式
先启master,再启slave
cd /usr/local/redis/conf/
redis-sentinel sentinel.conf &
查看哨兵信息
redis-cli -p 26379 info Sentinel
# Sentinel
sentinel_masters:1
sentinel_tilt:0
sentinel_running_scripts:0
sentinel_scripts_queue_length:0
sentinel_simulate_failure_flags:0
master0:name=mymaster,status=ok,address=192.168.80.10:6379,slaves=2,sentinels=3
故障模拟
查看redis-server进程号:
ps -ef | grep redis
root 57031 1 0 15:20 ? 00:00:07 /usr/local/bin/redis-server 0.0.0.0:6379
root 57742 1 1 16:05 ? 00:00:07 redis-sentinel *:26379 [sentinel]
root 57883 57462 0 16:17 pts/1 00:00:00 grep --color=auto redis
杀死 Master 节点上redis-server的进程号
kill -9 57031 #Master节点上redis-server的进程号
验证结果
tail -f /usr/local/redis/log/sentinel.log
6709:X 13 Mar 2023 12:27:29.517 # +sdown master mymaster 192.168.80.10 6379
6709:X 13 Mar 2023 12:27:29.594 * Sentinel new configuration saved on disk
6709:X 13 Mar 2023 12:27:29.594 # +new-epoch 1
6709:X 13 Mar 2023 12:27:29.595 * Sentinel new configuration saved on disk
6709:X 13 Mar 2023 12:27:29.595 # +vote-for-leader c64fac46fcd98350006900c330998364d6af635d 1
6709:X 13 Mar 2023 12:27:29.620 # +odown master mymaster 192.168.80.10 6379 #quorum 2/2
6709:X 13 Mar 2023 12:27:29.621 # Next failover delay: I will not start a failover before Mon Mar 13 12:33:30 2023
6709:X 13 Mar 2023 12:27:30.378 # +config-update-from sentinel c64fac46fcd98350006900c330998364d6af635d 192.168.80.11 26379 @ mymaster 192.168.80.10 6379
6709:X 13 Mar 2023 12:27:30.378 # +switch-master mymaster 192.168.80.10 6379 192.168.80.11 6379
6709:X 13 Mar 2023 12:27:30.378 * +slave slave 192.168.80.13:6379 192.168.80.13 6379 @ mymaster 192.168.80.11 6379
6709:X 13 Mar 2023 12:27:30.378 * +slave slave 192.168.80.10:6379 192.168.80.10 6379 @ mymaster 192.168.80.11 6379
6709:X 13 Mar 2023 12:27:30.381 * Sentinel new configuration saved on disk
6709:X 13 Mar 2023 12:27:33.379 # +sdown slave 192.168.80.10:6379 192.168.80.10 6379 @ mymaster 192.168.80.11 6379
redis-cli -p 26379 INFO Sentinel
# Sentinel
sentinel_masters:1
sentinel_tilt:0
sentinel_tilt_since_seconds:-1
sentinel_running_scripts:0
sentinel_scripts_queue_length:0
sentinel_simulate_failure_flags:0
master0:name=mymaster,status=ok,address=192.168.80.11:6379,slaves=2,sentinels=3
四、Redis 群集模式
-
集群,即Redis Cluster,是Redis 3.0开始引入的分布式存储方案
-
集群由多组节点(Node)组成,Redis的数据分布在这些节点中。集群中的节点分为主节点和从节点:只有主节点负责读写请求和集群信息的维护;从节点只进行主节点数据和状态信息的复制
1)集群的作用
(1)数据分区
-
数据分区(或称数据分片)是集群最核心的功能
-
集群将数据分散到多个节点,一方面突破了Redis单机内存大小的限制,存储容量大大增加;另一方面每个主节点都可以对外提供读服务和写服务,大大提高了集群的响应能力
-
Redis单机内存大小受限问题,在介绍持久化和主从复制时都有提及;例如,如果单机内存太大,bgsave和bgrewriteaof的fork操作可能导致主进程阻塞,主从环境下主机切换时可能导致从节点长时间无法提供服务,全量复制阶段主节点的复制缓冲区可能溢出
(2)高可用
-
集群支持主从复制和主节点的自动故障转移(与哨兵类似);当任一节点发生故障时,集群仍然可以对外提供服务
2)Redis集群的数据分片
-
Redis集群引入了哈希槽的概念
-
Redis集群有16384个哈希槽(编号0-16383)
-
集群的每组节点负责一部分哈希槽
-
每个Key通过CRC16校验后对16384取余来决定放置哪个哈希槽,通过这个值,去找到对应的插槽所对应的节点,然后直接自动跳转到这个对应的节点上进行存取操作
#以3个节点组成的集群为例:
节点A包含0到5460号哈希槽
节点B包含5461到10922号哈希槽
节点C包含10923到16383号哈希槽
#Redis集群的主从复制模型
集群中具有A、B、C三个节点,如果节点B失败了,整个集群就会因缺少5461-10922这个范围的槽而不可以用。
为每个节点添加一个从节点A1、B1、C1整个集群便有三个Master节点和三个slave节点组成,在节点B失败后,集群选举B1位为的主节点继续服务。当B和B1都失败后,集群将不可用。
3)搭建Redis 群集模式
redis的集群一般需要6个节点,3主3从。方便起见,这里所有节点在同一台服务器上模拟: 以端口号进行区分:
-
3个主节点端口号:6001/6002/6003
-
对应的从节点端口号:6004/6005/6006
cd /usr/local/redis/
mkdir -p redis-cluster/redis600{1..6}
for i in {1..6}
do
cp /opt/redis-7.0.9/redis.conf /usr/local/redis/redis-cluster/redis600$i
cp /opt/redis-7.0.9/src/redis-cli /opt/redis-7.0.9/src/redis-server /usr/local/redis/redis-cluster/redis600$i
done
开启群集功能
#其他5个文件夹的配置文件以此类推修改,注意6个端口都要不一样。
cd /usr/local/redis/redis-cluster/redis6001
vim redis.conf
#bind 127.0.0.1 #87行,注释掉bind项,默认监听所有网卡
protected-mode no #111行,关闭保护模式
port 6001 #138行,修改redis监听端口
daemonize yes #309行,设置为守护进程,后台启动
pidfile /usr/local/redis/log/redis_6001.pid #341行,指定 PID 文件
logfile "/usr/local/redis/log/redis_6001.log" #354行,指定日志文件
dir ./ #504行,指定持久化文件所在目录
appendonly yes #1379行,开启AOF
cluster-enabled yes #1576行,取消注释,开启群集功能
cluster-config-file nodes-6001.conf #1584行,取消注释,群集名称文件设置
cluster-node-timeout 15000 #1590行,取消注释群集超时时间设置
启动redis节点
分别进入那六个文件夹,执行命令:redis-server redis.conf ,来启动redis节点
cd /usr/local/redis/redis-cluster/redis6001
redis-server redis.conf
for d in {1..6}
do
cd /usr/local/redis/redis-cluster/redis600$d
./redis-server redis.conf
done
ps -ef | grep redis
启动集群
redis-cli --cluster create 127.0.0.1:6001 127.0.0.1:6002 127.0.0.1:6003 127.0.0.1:6004 127.0.0.1:6005 127.0.0.1:6006 --cluster-replicas 1
#六个实例分为三组,每组一主一从,前面的做主节点,后面的做从节点。下面交互的时候 需要输入 yes 才可以创建。
--replicas 1 表示每个主节点有1个从节点
测试群集
redis-cli -p 6001 -c #加-c参数,节点之间就可以互相跳转
127.0.0.1:6001> cluster slots #查看节点的哈希槽编号范围
1) 1) (integer) 54612) (integer) 10922 #哈希槽编号范围3) 1) "127.0.0.1"2) (integer) 6003 #主节点IP和端口号3) "fdca661922216dd69a63a7c9d3c4540cd6baef44"4) 1) "127.0.0.1"2) (integer) 6004 #从节点IP和端口号3) "a2c0c32aff0f38980accd2b63d6d952812e44740"
2) 1) (integer) 02) (integer) 54603) 1) "127.0.0.1"2) (integer) 60013) "0e5873747a2e26bdc935bc76c2bafb19d0a54b11"4) 1) "127.0.0.1"2) (integer) 60063) "8842ef5584a85005e135fd0ee59e5a0d67b0cf8e"
3) 1) (integer) 109232) (integer) 163833) 1) "127.0.0.1"2) (integer) 60023) "816ddaa3d1469540b2ffbcaaf9aa867646846b30"4) 1) "127.0.0.1"2) (integer) 60053) "f847077bfe6722466e96178ae8cbb09dc8b4d5eb"
127.0.0.1:6001> set name zhangsan
-> Redirected to slot [5798] located at 127.0.0.1:6003
OK
127.0.0.1:6001> cluster keyslot name #查看name键的槽编号
redis-cli -p 6004 -c
redis-cli -p 6001 -c cluster novv
相关文章:

redis的主从复制,哨兵和cluster集群
目录 一、redis的高可用 1)redis高可用的概念 2)Redis的高可用技术 二、redis主从复制 1)主从复制的作用 2)主从复制流程 三、redis一主二从的部署 实验组件 实验步骤 环境准备 修改内核参数 安装 Redis 创建redis工…...

Crowd-Robot Interaction 论文阅读
论文信息 题目:Crowd-Robot Interaction:Crowd-aware Robot Navigation with Attention-based Deep Reinforcement Learning 作者:Changan Chen, Y uejiang Liu 代码地址:https://github.com/vita-epfl/CrowdNav 来源:arXiv 时间…...

什么是LIMS系统,LIMS实验室管理系统
LIMS是实验室信息管理系统,全称是Laboratory Information Management System,是将以数据库为核心的信息化技术与实验室管理需求相结合的信息化管理工具。它是由计算机硬件和应用软件组成,能够完成实验室数据和信息的收集、分析、报告和管理&a…...

Python Opencv实践 - 图像属性相关
import numpy as np import cv2 as cv import matplotlib.pyplot as pltimg cv.imread("../SampleImages/pomeranian.png", cv.IMREAD_COLOR) plt.imshow(img[:,:,::-1])#像素操作 pixel img[320,370] print(pixel)#只获取蓝色通道的值 pixel_blue img[320,370,0]…...

PCB制造中铜厚度的重要性
电子产品中的PCB是现代电子设备中不可或缺的一部分。在PCB制造过程中,铜厚度是一个非常重要的因素。正确的铜厚度可以保证电路板的质量和性能,同时也影响着电子产品的可靠性和稳定性。 一般我们常见的铜厚有17.5um(0.5oz)&#x…...

浅谈高校宿舍水电表远程智能管理的研究与应用
安科瑞 华楠 摘要:本系统的设计是基于485总线技术与TCP/IP网络技术相结合的方式来实现的,充分考虑了目前高校后勤水电表管理控制的实际情况,以传输可靠性高、技术成熟、成本低的485总线技术为基础,并与应用广泛的TCP/IP网络相结合…...

无货源跨境电商购物平台快速搭建(微商城、小程序、APP、网站)
无货源跨境电商购物平台的快速搭建可以通过以下步骤完成,并且可以同时开发微商城、小程序、APP和网站以满足不同用户的需求。 第一步:需求分析 在搭建之前,需要对平台的需求进行详细的分析。包括用户需求、功能需求、技术需求等等。这一步是…...

力扣:57. 插入区间(Python3)
题目: 给你一个 无重叠的 ,按照区间起始端点排序的区间列表。 在列表中插入一个新的区间,你需要确保列表中的区间仍然有序且不重叠(如果有必要的话,可以合并区间)。 来源:力扣(LeetC…...

List和数组互转方法以及踩坑点
一、数组转List 1. 使用for循环逐个添加 String[] array {"A", "B", "C"}; List<String> list new ArrayList<>(); for (String element : array) {list.add(element); }2. 使用Arrays.asList(arr) String[] array {"A&q…...

css3背景渐变
1.线性渐变 <style>.box {width: 200px;height: 200px;border: 1px solid black;float: left;margin-left: 50px;}.box1 {background-image: linear-gradient(green, yellow, red);}/* 右上 */.box2 {background-image: linear-gradient(to right top, green, yellow, re…...

windows 安装免费3用户ccproxy ubuntu 代理上网
Windows 上进行安装 ubuntu 上进行设置 方法一 (临时的手段) 如果仅仅是暂时需要通过http代理使用apt-get,您可以使用这种方式。 在使用apt-get之前,在终端中输入以下命令(根据您的实际情况替换yourproxyaddress和proxyport)。 终…...

B树的插入与删除过程
B树的插入 原树: 插入key后,若导致原节点关键字数超过上限,则从中间位置( ⌈ m 2 ⌉ \lceil\frac{m}{2}\rceil ⌈2m⌉)将关键字分成两部分,左部分包含的关键字放在原节点中,右部分包含的关键…...

【二分】CF1623 C
Problem - 1623C - Codeforces 题意: 思路: 肯定是二分,我们去二分最小值,然后check的时候最小值要大于mid check的时候要让最小值尽可能大 注意到我们不需要去管最大值,只需要最小值尽可能大就好了,因…...

redis五大类型分析--list(1)
此篇为对redis五大数据类型中list的分析,希望能有所帮助 List API listTypePush函数 void listTypePush(robj *subject, robj *value, int where) {/* 检查编码类型是否为 quicklist (快速列表) */if (subject->encoding OBJ_ENCODING_QUICKLIST) {/* 根据参数…...

【多重信号分类】超分辨率测向方法——依赖于将观测空间分解为噪声子空间和源/信号子空间的方法具有高分辨率(HR)并产生准确的估计(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...

【Express.js】集成Websocket
集成websocket 本节我们介绍在如何在 express 中集成 websocket。 WebSocket 服务器可以主动向客户端推送信息,客户端也可以主动向服务器发送信息,是真正的双向平等对话,属于服务器推送技术的一种。 准备工作 创建一个 express.js 项目&a…...

MachineLearningWu_14/P65-P69_Multiclass
x.1 Multiclass多分类问题 对于分类问题,往往指的是二分类问题,而对于二分类的decision boundary较为简单,而实际生活中会有很多问题是多分类问题,例如MNIST手写数字识别, 从特征空间上来看,二分类和多分类…...

深入理解高并发编程 - SimpleDateFormat 类的线程安全问题
1、重现与解决 1.1、重现 import java.text.SimpleDateFormat; import java.util.Date;public class UnsafeSimpleDateFormatExample {public static void main(String[] args) {SimpleDateFormat sdf new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");Runnable task…...

接口幂等性实现方式
优质博文:IT-BLOG-CN 幂等 操作的特点是一次和多次请求某一个资源对于资源本身应该具有同样的结果(网络超时等问题除外)。幂等函数或幂等方法是指可以使用相同参数重复执行,并能获得相同结果的函数。这些函数不会影响系统状态&am…...

redis高可用之持久化
目录 一、Redis 高可用的相关知识 1)什么是高可用 2)Redis的高可用技术 3)持久化的功能 4)redis持久化的方式 二、RDB持久化 1)RDB持久化的触发方式 (1)手动触发 (2&…...

Cocos Creator 3.8 后期效果 Shader 编写(2/2) 进阶篇
前言 在上一篇文章中,麒麟子给大家分享了如何在 Cocos Creator 3.8 中的自定义管线中,添加属于自己的后期效果 Shader。 但基于 BlitScreen 的方案,我们只能编写最简单后效 Shader,如果我们想要支持更多复杂的 Shader,…...

【JS自用模板】自动点击选课的操作模板
以激动点击课程为案例复习一下基本前端,容易涉及的问题包括如何提取object类的数字,setTimeout为什么不起作用? 具体思路是,此处会立刻选中符合条件的页面元素打开,然后1小时后会刷新页面,相应地播放页面也…...

TENNECO EDI 项目——X12与XML之间的转换
近期为了帮助广大用户更好地使用 EDI 系统,我们根据以往的项目实施经验,将成熟的 EDI 项目进行开源。用户安装好知行之桥EDI系统之后,只需要下载我们整理好的示例代码,并放置在知行之桥指定的工作区中,即可开始使用。 …...

C++项目:在线五子棋对战(网页版)
项目介绍 本项⽬主要实现⼀个⽹⻚版的五⼦棋对战游戏,其主要⽀持以下核⼼功能: • 用户管理:实现用户注册,用户登录、获取用户信息、用户天梯分数记录、用户比赛场次记录等。 • 匹配对战:实现两个玩家在网页端根据天梯分数匹配游戏对⼿&…...

flutter遇到的小问题记录
flutter-getx的Get.bottomSheet组件改变高度 Get.bottomSheet( isScrollControlled: true,) isScrollControlled: true 就是控制高度 (无语) 截取视频第一针 返回的是本地url 或者Uint8List的数据 String? videoStr await VideoThumbnail.thumbnailFile(video: videoPath,…...

Golang bitset 基本使用
安装: go get github.com/bits-and-blooms/bitset下面代码把fmtx换成fmt就行 //------------基本操作------------//构建一个64bit长度的bitsetb : bitset.New(64)//放入一个数b.Set(10)fmtx.Println("add-10:", b.DumpAsBits()) // 0000000…...

sql 分组讨论,二级分组(非2个字段分组),使用 窗口函数和普通分组实现
1. 二级分组需求 先按照一个字段分组,在按照 第二个字段分组。之后,如果 这个 二级分组中的数据,是 > 1条的。就筛选出来。 比如: 先按照 站点分组,再按照 设备分组, 即:如果站点上配置了…...

业务中如何过滤敏感词
在我们访问网站的时候,如果发现我们发布的内容有色情暴力的东西等等,会屏蔽掉,这种行为就是过滤敏感词。 从技术层面实现起来,其实比较简单,因为我们输入的内容就是一个大型的字符串,我们要调用某些api来判…...

用服务器搭建网站需要做什么
网站建设是一个广义的术语,涵盖了许多不同的技能和学科中所使用的生产和维护的网站。不同领域的网页设计,网页图形设计,界面设计,创作,其中包括标准化的代码和专有软件,用户体验设计和搜索引擎优化。许多人…...

clickhouse 删除操作
OLAP 数据库设计的宗旨在于分析适合一次插入多次查询的业务场景,市面上成熟的 AP 数据库在更新和删除操作上支持的均不是很好,当然 clickhouse 也不例外。但是不友好不代表不支持,本文主要介绍在 clickhouse 中如何实现数据的删除,…...