当前位置: 首页 > news >正文

立即开始使用 3D 图像

一、说明

        这个故事介绍了使用这种类型的数据来训练机器学习3D模型。特别是,我们讨论了Kaggle中可用的MNIST数据集的3D版本,以及如何使用Keras训练模型识别3D数字。

        3D 数据无处不在。由于我们希望构建AI来与我们的物理世界进行交互,因此使用3D数据来训练我们的模型非常有意义。

二、3D 数据从何而来?

        现在看看你周围的物体。它们是占据三维房间的三维实体,您 - 也是一个3D实体 - 此时此刻。如果这个房间里的所有东西都是静态的,我们可以将此环境建模为 3D 空间数据。

                                                                建筑扫描 — 来源

        3D 数据有多种来源,例如 2D 图像序列和 3D 扫描仪数据。在这个故事中,我们开始使用来自流行MNIST数据集的合成生成的3D版本的点云来处理3D数据。

三、3D MNIST 数据集

        以防万一您还不知道,MNIST是著名的2D手写数字图像集。MNIST 中的元素是小型 28x28 灰度图像。在这个故事中,我们将使用MNIST的3D版本:

MNIST 中的原始数字

                                                        修改后的3D版本

        可以使用此 jupyter 笔记本生成此数据集。

        增强型 MNIST 3D 中的 3D 图像是从 MNIST 中的原始 2D 图像中获得的,这些图像经过一组转换修改:

1 - 膨胀:这是堆叠 N 次相同数字图像以从 3D 数字获得 2D 身体的过程。

                                        手写数字的放大版本 3

2 - 噪声:对每个 3D 点应用显著的高斯噪声

                                                        具有高斯噪声的相同图像

3 - 着色:MNIST 中的寄存器是灰度图像。为了使事情更具挑战性,让我们将它们转换为包含随机颜色

4 - 旋转:一旦它们是 3D 对象,我们就可以旋转它们,这就是我们要做的

                                        具有不同旋转的相同图像

        有关3D MNIST数据集的更多详细信息可以在Kaggle中找到。现在,让我们直接跳到分步过程:

四、获取和加载数据

        首先要做的是:从Kaggle下载数据集文件。解压缩文件以获取 3d-mnist.h5。然后,加载数据集

        简而言之,train_x 或 test_x 中的每个寄存器都是一个 16x16x16 的立方体。每个立方体保存一个 3D 数字的点云数据。您可以轻松地从数据集中提取任何寄存器:

        结果如下:

事实上,这是MNIST中第3个元素的增强181D版本:

现在我们已经加载了数据集,我们可以使用它来训练我们的模型。

4.1 定义模型

        我们希望训练一个模型来识别立方体中数字的 3D 表示。在规范 2D 版本的 MNIST 中用于识别手写数字的模型不适合 3D 数据集版本。因此,为了处理3D数据,有必要使用3D转换,例如卷积3D和3D最大池化。实际上,Keras支持这种类型的过滤器。

定义一个3D模型来处理我们的3D数据确实非常简单:

        这是一个非常简单的模型,但可以完成这项工作。请记住,您可以在此处获取完整的源代码。

4.2 训练模型

让我们使用随机梯度下降来训练模型。随意使用您喜欢的另一个优化器(adamRMSProp等):

model = define_model()
model.compile(loss=tensorflow.keras.losses.categorical_crossentropy,optimizer=tensorflow.keras.optimizers.SGD(learning_rate=0.01, momentum=0.9), metrics=['accuracy'])
history = model.fit(train_X_3D, train_y, batch_size=32, epochs=4, verbose=1, validation_split=0.2)

我刚刚运行了这段代码,这是我的输出:

4.3 训练结果

        这是我们的第一次审判。仅经过 4 个 epoch,我们在验证集上获得了 96.34% 的准确率!当然,对混淆矩阵进行适当的分析可以更好地理解这种性能。但是,至少在第一次运行中,这些结果是鼓舞人心的!

        请注意,验证损失在 4 个 epoch 中一直在减少。显然,这列火车比必要的时间更早完成。下一次,我们可能会设置更高的纪元数量并使用更详细的停止条件。

让我们看看它在测试数据上的表现如何!

4.4 评估模型

        以下是我们将如何检查性能:

score = model.evaluate(test_X_3D, test_y, verbose=0)
print('Test accuracy: %.2f%% Test loss: %.3f' % (score[1]*100, score[0])) 

        这是我们目前的结果:

        我不得不说我真的很惊讶。这个简单的模型实现了良好的性能,即使数据几乎没有被噪声、旋转和随机颜色映射所修改。

        此外,考虑到数据量和不使用 GPU,训练速度太快了!凉!

        我们可以调整超参数和训练优化器,以轻松获得更好的结果。然而,高性能并不是我们的目标。

        我们学习了如何使用3D卷积,现在我们知道如何创建简单但功能强大的CNN网络来处理我们的3D数据。

五、下一步是

下一步是训练模型以识别从 4D 图像时间序列生成的 3D 数据中的事件。敬请期待!

相关文章:

立即开始使用 3D 图像

一、说明 这个故事介绍了使用这种类型的数据来训练机器学习3D模型。特别是,我们讨论了Kaggle中可用的MNIST数据集的3D版本,以及如何使用Keras训练模型识别3D数字。 3D 数据无处不在。由于我们希望构建AI来与我们的物理世界进行交互,因此使用3…...

鸿鹄工程项目管理系统em Spring Cloud+Spring Boot+前后端分离构建工程项目管理系统em

​ Java版工程项目管理系统 Spring CloudSpring BootMybatisVueElementUI前后端分离 功能清单如下: 首页 工作台:待办工作、消息通知、预警信息,点击可进入相应的列表 项目进度图表:选择(总体或单个)项目…...

《向量数据库》——怎么安装向量检索库Faiss?

装 Faiss 以下教程将展示如何在 Linux 系统上安装 Faiss: 1. 安装 Conda。 在安装 Faiss 之前,先在系统上安装 Conda。Conda 是一个开源软件包和环境管理系统,可在 Windows、macOS 和 Linux 操作系统上运行。根据以下步骤在 Linux 系统上安装 Conda。 2. 从官网…...

学习pytorch 2 导入查看dataset

学习pytorch 2 2. dataset实战代码数据集 2. dataset实战 B站小土堆视频 代码 from torch.utils.data import Dataset from PIL import Image #import cv2 import osclass MyData(Dataset):def __init__(self, root_dir, label_dir):self.root_dir root_dirself.label_dir …...

三、kubeadm部署单Master节点kubernetes集群

kubeadm部署单Master节点kubernetes集群 一、kubernetes 1.21发布 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-sGgnZuno-1691633861803)(kubeadm部署单Master节点kubernetes集群 1.21.0.assets/image-20220119160108054.png)] 1.1 介绍 2021年…...

js-6:typeof和instanceof的区别

1、typeof typeof操作符返回一个字符串,表示未经计算的操作数的类型。 operand表示对象或原始值的表达式,其类型将被返回。 从上面的例子可以看出,前6个都是基础数据类型,虽然typeof null为object,但这只是javascrip…...

SQL SERVER 异地备份到远程共享文件夹异常处理

SQL SERVER 异地备份到远程共享文件夹异常处理 SQL Server 异地备份到远程共享文件夹异常处理 - 灰信网(软件开发博客聚合) -- 允许配置高级选项 EXEC sp_configure show advanced options, 1 GO -- 重新配置 RECONFIGURE GO -- 启用xp_cmdshell EXEC sp…...

服务器数据恢复-RAID5上层Hyper-V虚拟机数据恢复案例

服务器数据恢复环境: 一台Windows Server服务器,部署Hyper-V虚拟化环境,虚拟机的硬盘文件和配置文件存放在一台DELL存储中。该存储中有一组由4块硬盘组建的RAID5阵列,用来存放虚拟机的数据文件,另外还有一块大容量硬盘…...

Easy Rules规则引擎(1-基础篇)

目录 一、序言二、Easy Rules介绍三、定义规则(Rules)1、规则介绍2、编程式规则定义3、声明式规则定义 四、定义事实(Facts)五、定义规则引擎(Rules Engine)1、规则引擎介绍2、InferenceRulesEngine规则引擎示例(1) 定义触发条件(2) 定义规则触发后的执行行为(3) 测试用例 一、…...

Linux 上安装部署Nacos

标题:在Linux上安装和部署Nacos Nacos是一个开源的分布式服务发现和配置管理平台,它可以帮助开发人员实现微服务架构中的服务注册、发现和动态配置管理。 步骤1:准备工作 在开始安装Nacos之前,确保您已经具备以下条件&#xff1…...

电动机的启动

1电动机启动分类 电动机启动方式包括:全压直接启动、自耦减压启动、Y-Δ 启动、软启动器、变频器。其中软启动器和变频器启动为潮流。当然也不是一定要使用软启动器和变频器启动,在运用的时候根据实际情况,从经济和适用性自行考虑选择。 2电…...

python性能分析,logging性能,print性能,文件写入性能对比

先说结论,没想到的是print性能比logging性能好,输出到控制台会极大降低程序性能,以下是我的性能对比结果: 运行情况是python后台运行并输出到日志,命令是 python3 test.py > /opt/testtime.log 2>&1 &...

[GIN-debug] [ERROR] listen tcp: address 8080: missing port in address

学习Golang_gin框架的第一天 遇到一下报错 : [GIN-debug] [ERROR] listen tcp: address 8080: missing port in address 错误代码 : package mainimport "github.com/gin-gonic/gin"func main() {router : gin.Default()router.GET("/index", func…...

PHP codeigniter4 搭配Nginx

> 主要是为了用Nginx运行PHP环境 1. Nginx 官方文档的配置 default.conf This configuration enables URLs without “index.php” in them and using CodeIgniter’s “404 - File Not Found” for URLs ending with “.php”. server {listen 80;listen [::]:80;se…...

AWS——04篇(AWS之Amazon S3(云中可扩展存储)-02——EC2访问S3存储桶)

AWS——04篇(AWS之Amazon S3(云中可扩展存储)-02——EC2访问S3存储桶) 1. 前言2. 创建EC2实例 S3存储桶3. 创建IAM角色4. 修改EC2的IAM 角色5. 连接EC2查看效果5.1 连接EC25.2 简单测试5.2.1 查看桶内存储情况5.2.2 复制本地文件…...

.netcore下grpc概述

一、什么是grpc 是一种与语言无关的高性能远程过程调用 (RPC) 框架。基于http/2标准设计,提供了头部压缩、tcp连接上的多路复用、流量控制、流式处理(客户端流/服务端流/双向流)。提供统一使用的.proto文件,它定义 grpc 服务和消…...

Address already in use

netstat -tunllp netstat -tunllp 命令是用来查看系统上所有的网络连接和监听端口,包括 TCP 和 UDP 连接。这个命令的选项含义如下: -t: 显示 TCP 连接-u: 显示 UDP 连接-n: 不进行主机名和服务名的解析,直接显示数字形式的 IP 地址和端口号…...

♥ vue中$set用法详细讲解

♥ vue中$set用法详细讲解 1、认识 在vue中,并不是任何时候数据都是双向绑定的。 官方文档介绍 使用场景 当数据没有被双向绑定的时候,我们就需要使用set了 举个例子: vue的data里边声明或者已经赋值过的对象或者数组(数组里…...

岩土工程仪器多通道振弦传感器信号转换器应用于桥梁安全监测

岩土工程仪器多通道振弦传感器信号转换器应用于桥梁安全监测 桥梁作为交通运输的重要节点,其安全性一直备受关注。不同于其他建筑物,桥梁所处的环境复杂多变,同时,其所需承受的负荷也相对较大,这就需要对桥梁的安全进…...

企业权限管理(六)-订单详情

订单详情查询 跳转到订单详情页面orders-show.jsp <button type"button" class"btn bg-olive btn-xs" onclick"location.href${pageContext.request.contextPath}/orders/findById.do?id${orders.id}">详情</button>OrdersControl…...

IGP(Interior Gateway Protocol,内部网关协议)

IGP&#xff08;Interior Gateway Protocol&#xff0c;内部网关协议&#xff09; 是一种用于在一个自治系统&#xff08;AS&#xff09;内部传递路由信息的路由协议&#xff0c;主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...

生成 Git SSH 证书

&#x1f511; 1. ​​生成 SSH 密钥对​​ 在终端&#xff08;Windows 使用 Git Bash&#xff0c;Mac/Linux 使用 Terminal&#xff09;执行命令&#xff1a; ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" ​​参数说明​​&#xff1a; -t rsa&#x…...

以光量子为例,详解量子获取方式

光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学&#xff08;silicon photonics&#xff09;的光波导&#xff08;optical waveguide&#xff09;芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中&#xff0c;光既是波又是粒子。光子本…...

C++ 设计模式 《小明的奶茶加料风波》

&#x1f468;‍&#x1f393; 模式名称&#xff1a;装饰器模式&#xff08;Decorator Pattern&#xff09; &#x1f466; 小明最近上线了校园奶茶配送功能&#xff0c;业务火爆&#xff0c;大家都在加料&#xff1a; 有的同学要加波霸 &#x1f7e4;&#xff0c;有的要加椰果…...

LabVIEW双光子成像系统技术

双光子成像技术的核心特性 双光子成像通过双低能量光子协同激发机制&#xff0c;展现出显著的技术优势&#xff1a; 深层组织穿透能力&#xff1a;适用于活体组织深度成像 高分辨率观测性能&#xff1a;满足微观结构的精细研究需求 低光毒性特点&#xff1a;减少对样本的损伤…...

深入理解Optional:处理空指针异常

1. 使用Optional处理可能为空的集合 在Java开发中&#xff0c;集合判空是一个常见但容易出错的场景。传统方式虽然可行&#xff0c;但存在一些潜在问题&#xff1a; // 传统判空方式 if (!CollectionUtils.isEmpty(userInfoList)) {for (UserInfo userInfo : userInfoList) {…...

Linux部署私有文件管理系统MinIO

最近需要用到一个文件管理服务&#xff0c;但是又不想花钱&#xff0c;所以就想着自己搭建一个&#xff0c;刚好我们用的一个开源框架已经集成了MinIO&#xff0c;所以就选了这个 我这边对文件服务性能要求不是太高&#xff0c;单机版就可以 安装非常简单&#xff0c;几个命令就…...

区块链技术概述

区块链技术是一种去中心化、分布式账本技术&#xff0c;通过密码学、共识机制和智能合约等核心组件&#xff0c;实现数据不可篡改、透明可追溯的系统。 一、核心技术 1. 去中心化 特点&#xff1a;数据存储在网络中的多个节点&#xff08;计算机&#xff09;&#xff0c;而非…...

如何在Windows本机安装Python并确保与Python.NET兼容

✅作者简介&#xff1a;2022年博客新星 第八。热爱国学的Java后端开发者&#xff0c;修心和技术同步精进。 &#x1f34e;个人主页&#xff1a;Java Fans的博客 &#x1f34a;个人信条&#xff1a;不迁怒&#xff0c;不贰过。小知识&#xff0c;大智慧。 &#x1f49e;当前专栏…...

Java 与 MySQL 性能优化:MySQL 慢 SQL 诊断与分析方法详解

文章目录 一、开启慢查询日志&#xff0c;定位耗时SQL1.1 查看慢查询日志是否开启1.2 临时开启慢查询日志1.3 永久开启慢查询日志1.4 分析慢查询日志 二、使用EXPLAIN分析SQL执行计划2.1 EXPLAIN的基本使用2.2 EXPLAIN分析案例2.3 根据EXPLAIN结果优化SQL 三、使用SHOW PROFILE…...