当前位置: 首页 > news >正文

中国城乡建设委员会的网站/辽源seo

中国城乡建设委员会的网站,辽源seo,好看的团队官网源码,个人网站效果图一.举例通俗解释ResNet思想 假设你正在学习如何骑自行车,并且想要骑到一个遥远的目的地。你可以选择直接骑到目的地,也可以选择在途中设置几个“中转站”,每个中转站都会告诉你如何朝着目的地前进。 在传统的神经网络中,就好比只…

一.举例通俗解释ResNet思想

假设你正在学习如何骑自行车,并且想要骑到一个遥远的目的地。你可以选择直接骑到目的地,也可以选择在途中设置几个“中转站”,每个中转站都会告诉你如何朝着目的地前进。

传统的神经网络中,就好比只能选择直接骑到目的地。当你的目的地很远时,可能会出现骑不到目的地的情况,因为网络在训练过程中无法有效地传递信息,导致梯度消失梯度爆炸

而ResNet则是在途中设置多个**“残差块”作为中转站**。每个残差块相当于一个中转站。

二.ResNet网络结构

在这里插入图片描述

假设f(x)是最终求得的函数。ResNet把函数拆成了f(x) = x + g(x).
在这里插入图片描述

传统网络相当于直接达到目的地,就是直接求f(x)。
ResNet是先到达一个中转站,即先求得g(x),再求g(x) + x 得到f(x)。同时可以推出g(x) = f(x) - x。

三.用实际的数举例子:

假设要求的f(x) = 5x^2 + 3x +2
ResNet先求得 g(x) = f(x) - x = 5x^2 + 2x +2 ,然后将g(x) x相加,最终得到f(x)=g(x) + x = 5x^2 + 3x +2

四.为什么ResNet非要设计成先求一个中转的函数g(x),然后再加上x呢?

4.1 解决网络加深,效果变差的问题

在这里插入图片描述

假如输入的x已经是最好的结果,如果加深网络效果会变差,即把最好的结果x输入到新一层的网络g(x)中,效果会变差。

那么我们直接令g(x)=0,相当于舍弃掉影响最优结果的网络块。最终得到的f(x) = 0 +x,保留了最优结果x

从反向传播的角度来说,解决梯度消失和梯度爆炸的问题

在这里插入图片描述
对y=F(x)+x求偏导发现会出现画圈的地方,梯度消失是累积的乘积中出现接近0的数,影响梯度的结果,梯度爆炸是累积乘积,结果出现指数级增长。多了画圈地方的+操作,就打破了累乘,结果不容易出现梯度消失与爆炸。

五.代码实现

import torch
from torch import nn
from torch.nn import functional as F
from d2l import  torch as d2l
import time
class Residual(nn.Module):def __init__(self,input_channels,num_channels,use_1x1conv=False,strides=1):super().__init__()self.conv1 = nn.Conv2d(input_channels,num_channels,kernel_size=3,padding=1,stride=strides)self.conv2 = nn.Conv2d(num_channels,num_channels,kernel_size=3,padding=1)if use_1x1conv: # 使用1x1卷积核控制输出通道数self.conv3 = nn.Conv2d(input_channels,num_channels,kernel_size=1,stride=strides)else:self.conv3 = Noneself.bn1 = nn.BatchNorm2d(num_channels)self.bn2 = nn.BatchNorm2d(num_channels)def forward(self,X):Y = F.relu(self.bn1(self.conv1(X)))Y = self.bn2(self.conv2(Y))if self.conv3: # 用1x1卷积将x通道与形状 调整的与 f(x)-x一致X = self.conv3(X)# 不用1x1调整通道时直接 y+X = = f(x)-X + XY += Xreturn F.relu(Y)

包含以及不包含 1 × 1 卷积层的残差块

此代码生成两种类型的网络:一种是当use_1x1conv=False时,应用ReLU非线性函数之前,
将输入添加到输出。另一种是当use_1x1conv=True时,添加通过1 × 1卷积调整通道和分辨率。
在这里插入图片描述

blk = Residual(input_channels=3,num_channels=3)
X = torch.rand(4, 3, 6, 6)
Y = blk(X)
Y.shape

torch.Size([4, 3, 6, 6])

# 使用1x1卷积控制通道数,使用strides=2减半输出的高和宽,num_channels是输出的通道数
blk = Residual(input_channels=3,num_channels=6, use_1x1conv=True, strides=2)
blk(X).shape

torch.Size([4, 6, 3, 3])

ResNet模型架构

在这里插入图片描述

#ResNet模型
b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
nn.BatchNorm2d(64), nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
# 残差块
def resnet_block(input_channels, num_channels, num_residuals,first_block=False):blk = []for i in range(num_residuals):if i == 0 and not first_block:blk.append(Residual(input_channels, num_channels,use_1x1conv=True, strides=2))else:blk.append(Residual(num_channels, num_channels))return blk
# 接着在ResNet加入所有残差块,这里每个模块使用2个残差块。
b2 = nn.Sequential(*resnet_block(64, 64, 2, first_block=True))
b3 = nn.Sequential(*resnet_block(64, 128, 2))
b4 = nn.Sequential(*resnet_block(128, 256, 2))
b5 = nn.Sequential(*resnet_block(256, 512, 2))
# 最后,与GoogLeNet一样,在ResNet中加入全局平均汇聚层,以及全连接层输出。
# 每个模块有4个卷积层(不包括恒等映射的1 × 1卷积层)。加上第一个7 × 7卷积层和最后一个全连接层,共有18层。因此,这种模型通常被称为ResNet-18。
net = nn.Sequential(b1, b2, b3, b4, b5,nn.AdaptiveAvgPool2d((1,1)),nn.Flatten(), nn.Linear(512, 10))
# 观察一下ResNet中不同模块的输入形状是如何变化的。在之前所有架构中,分辨率降低,通道数量增加,直到全局平均汇聚层聚集所有特征。
X = torch.rand(size=(1, 1, 224, 224))
for layer in net:X = layer(X)print(layer.__class__.__name__,'output shape:\t', X.shape)
# 库中的函数没有取最优的准确率,自己实现一个
def train_ch6(net, train_iter, test_iter, num_epochs, lr, device):"""Train a model with a GPU (defined in Chapter 6).Defined in :numref:`sec_lenet`"""def init_weights(m):if type(m) == nn.Linear or type(m) == nn.Conv2d:nn.init.xavier_uniform_(m.weight)net.apply(init_weights)print('training on', device)net.to(device)optimizer = torch.optim.SGD(net.parameters(), lr=lr)loss = nn.CrossEntropyLoss()animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],legend=['train loss', 'train acc', 'test acc'])timer, num_batches = d2l.Timer(), len(train_iter)best_test_acc = 0for epoch in range(num_epochs):# Sum of training loss, sum of training accuracy, no. of examplesmetric = d2l.Accumulator(3)net.train()for i, (X, y) in enumerate(train_iter):timer.start()optimizer.zero_grad()X, y = X.to(device), y.to(device)y_hat = net(X)l = loss(y_hat, y)l.backward()optimizer.step()with torch.no_grad():metric.add(l * X.shape[0], d2l.accuracy(y_hat, y), X.shape[0])timer.stop()train_l = metric[0] / metric[2]train_acc = metric[1] / metric[2]if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:animator.add(epoch + (i + 1) / num_batches,(train_l, train_acc, None))test_acc = d2l.evaluate_accuracy_gpu(net, test_iter)if test_acc>best_test_acc:best_test_acc = test_accanimator.add(epoch + 1, (None, None, test_acc))print(f'loss {train_l:.3f}, train acc {train_acc:.3f}, 'f'test acc {test_acc:.3f}, best test acc {best_test_acc:.3f}')# 取的好像是平均准备率print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec 'f'on {str(device)}')
'''训练并打印训练耗时'''
'''开始计时'''
start_time = time.time()lr, num_epochs, batch_size = 0.05, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
# 使用自己的训练函数
train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())'''计时结束'''
end_time = time.time()
run_time = end_time - start_time
# 将输出的秒数保留两位小数
if int(run_time)<60:print(f'{round(run_time,2)}s')
else:print(f'{round(run_time/60,2)}minutes')

在这里插入图片描述
牛逼!比之前所有的模型准确率都高。

参考文章与视频

三分钟说明白ResNet ,关于它的设计、原理、推导及优点
https://www.bilibili.com/video/BV1cM4y117ob/?spm_id_from=333.337.search-card.all.click&vd_source=ebc47f36e62b223817b8e0edff181613

ResNet详解——通俗易懂版
https://blog.csdn.net/sunny_yeah_/article/details/89430124

相关文章:

7.6 通俗易懂解读残差网络ResNet 手撕ResNet

一.举例通俗解释ResNet思想 假设你正在学习如何骑自行车&#xff0c;并且想要骑到一个遥远的目的地。你可以选择直接骑到目的地&#xff0c;也可以选择在途中设置几个“中转站”&#xff0c;每个中转站都会告诉你如何朝着目的地前进。 在传统的神经网络中&#xff0c;就好比只…...

robotframework+selenium 进行webui页面自动化测试

robotframework其实就是一个自动化的框架&#xff0c;想要进行什么样的自动化测试&#xff0c;就需要在这框架上添加相应的库文件&#xff0c;而用于webui页面自动化测试的就是selenium库. 关于robotframework框架的搭建我这里就不说了&#xff0c;今天就给大家根据一个登录的实…...

手机突然无法获取ip地址

在日常生活中&#xff0c;我们对手机的依赖越来越大&#xff0c;尤其是在联网方面。然而&#xff0c;有时候我们可能会遇到手机无法获取IP地址的问题&#xff0c;这给我们的正常使用带来了很多不便。当我们的手机无法获得IP地址时&#xff0c;我们将无法连接到互联网或局域网&a…...

C++——关于命名空间

写c项目时&#xff0c;大家常用到的一句话就是&#xff1a; using namespace std; 怎么具体解析这句话呢&#xff1f; 命名冲突&#xff1a; 在c语言中&#xff0c;我们有变量的命名规范&#xff0c;如果一个变量名或者函数名和某个库里面自带的库函数或者某个关键字重名&…...

怎么进行流程图制作?用这个工具制作很方便

怎么进行流程图制作&#xff1f;流程图是一种非常有用的工具&#xff0c;可以帮助我们更好地理解和展示各种复杂的业务流程和工作流程。它可以将复杂的过程简化为易于理解的图形和文本&#xff0c;使得人们更容易理解和跟踪整个流程。因此&#xff0c;制作流程图是在日常工作中…...

【ChatGPT 指令大全】怎么使用ChatGPT来辅助学习英语

在当今全球化的社会中&#xff0c;英语已成为一门世界性的语言&#xff0c;掌握良好的英语技能对个人和职业发展至关重要。而借助人工智能的力量&#xff0c;ChatGPT为学习者提供了一个有价值的工具&#xff0c;可以在学习过程中提供即时的帮助和反馈。在本文中&#xff0c;我们…...

Ubuntu20配置仅主机网络

Ubuntu20配置仅主机网络&#xff0c;使虚拟机与物理机网络联通且配置固定IP 进入终端&#xff1a;vim /etc/netplan/01-network-manager-all.yaml 修改为&#xff1a; network:ethernets:enp0s8:addresses: [192.168.138.108/24]dhcp4: false optional: truegateway4: 192.…...

调整奇数偶数顺序

调整数组使奇数全部都位于偶数前面。 题目&#xff1a; 输入一个整数数组&#xff0c;实现一个函数&#xff0c;来调整该数组中数字的顺序使得数组中所有的奇数位于数组的前半部分&#xff0c;所有偶数位于数组的后半部分。 思路&#xff1a; 1. 给定两个下标left和right&#…...

日志的规范

确定日志级别&#xff1a; 确保你的系统有一个明确的日志级别策略。通常&#xff0c;日志级别包括DEBUG&#xff0c;INFO&#xff0c;WARN&#xff0c;ERROR和FATAL。DEBUG级别的日志记录所有详细信息&#xff0c;适用于开发和调试环境。INFO级别的日志记录常规操作信息&#x…...

Spring AOP(AOP概念,组成成分,实现,原理)

目录 1. 什么是Spring AOP&#xff1f; 2. 为什么要用AOP&#xff1f; 3. AOP该怎么学习&#xff1f; 3.1 AOP的组成 &#xff08;1&#xff09;切面&#xff08;Aspect&#xff09; &#xff08;2&#xff09;连接点&#xff08;join point&#xff09; &#xff08;3&a…...

Android WebView简单应用:构建内嵌网页浏览功能

在现代移动应用开发中&#xff0c;内嵌网页浏览功能是许多应用程序的常见需求。Android平台提供了WebView组件&#xff0c;它允许开发者将网页内容嵌入到应用中&#xff0c;并提供了丰富的功能和定制选项。本文将介绍如何在Android应用中使用WebView组件&#xff0c;帮助您快速…...

并发——乐观锁常见的两种实现方式,乐观锁的缺点

文章目录 乐观锁常见的两种实现方式1. 版本号机制2. CAS算法 乐观锁的缺点1 ABA 问题2 循环时间长开销大3 只能保证一个共享变量的原子操作 乐观锁常见的两种实现方式 乐观锁一般会使用版本号机制或CAS算法实现。 1. 版本号机制 一般是在数据表中加上一个数据版本号version字段…...

Spring 事务管理

目录 1. 事务管理 1.1. Spring框架的事务支持模型的优势 1.1.1. 全局事务 1.1.2. 本地事务 1.1.3. Spring框架的一致化编程模型 1.2. 了解Spring框架的事务抽象&#xff08;Transaction Abstraction&#xff09; 1.2.1. Hibernate 事务设置 1.3. 用事务同步资源 1.3.1…...

unity修改单个3D物体的重力的大小该怎么处理呢?

在Unity中修改单个3D物体的重力大小可以通过以下步骤实现&#xff1a; 创建一个新的C#脚本来控制重力&#xff1a; 首先&#xff0c;创建一个新的C#脚本&#xff08;例如&#xff1a;GravityModifier.cs&#xff09;并将其附加到需要修改重力的3D物体上。在脚本中&#xff0c…...

[Qt]FrameLessWindow实现调整大小、移动弹窗并具有Aero效果

说明 我们知道QWidget等设置了this->setWindowFlags(Qt::FramelessWindowHint);后无法移动和调整大小&#xff0c;但实际项目中是需要窗口能够调整大小的。所以以实现FrameLess弹窗调整大小及移动弹窗需求&#xff0c;并且在Windows 10上有Aero效果。 先看一下效果&#xf…...

【API生命周期看护】API日落

一、基本概念 在API的整个生命周期中&#xff0c;不可能是永远不变的。功能可能有变动、服务也可能有升级迭代&#xff0c;这个时候对外的能力入口&#xff1a;API自然也需要改变。 一般来说&#xff0c;API的变动是不可以引入兼容性问题的&#xff0c;也即不管做什么变动&am…...

PHP 使用ThinkPHP实现电子邮件发送示例

文章目录 首先我们需要设置我们的邮箱客户端授权&#xff0c;获取到授权码找到我们的邮箱设置去账号中找到这一堆服务&#xff0c;找到后开启smtp服务开启服务后管理服务 接下来需要去下载相应的第三方类库(我这里使用的是PHPMailer)在thinkPHP中封装一下邮件服务类实际调用效果…...

Leetcode-每日一题【剑指 Offer 18. 删除链表的节点】

题目 给定单向链表的头指针和一个要删除的节点的值&#xff0c;定义一个函数删除该节点。 返回删除后的链表的头节点。 注意&#xff1a;此题对比原题有改动 示例 1: 输入: head [4,5,1,9], val 5输出: [4,1,9]解释: 给定你链表中值为 5 的第二个节点&#xff0c;那么在调…...

[LINUX使用] top 命令的使用

COLUMNS150 LINES100 top 序号 是否为启动命令 命令模板 详解 1 no vh 帮助 2 yes -d 0.01 0.01秒的间隔刷新top输出 3 no c COMMAND列切换 4 yes -e [k | m | g | t | p] 以何种计量单位显示内存列 k-kb&#xff0c;m-mb&#xff0c;g-gb&#xff0c;t-t…...

通过redis进行缓存分页,通过SCAN扫描进行缓存更新

问题&#xff1a;当我们要添加缓存时&#xff0c;如果我们用了PageHelper时&#xff0c;PageHelper只会对查询语句有效&#xff08;使用到sql的查询&#xff09;&#xff0c;那么如果我们把查询到的数据都添加到缓存时&#xff0c;就会无法进行分页&#xff1b; 此时我们选择将…...

C#小轮子 Debug,Release,发布模式如何运行不同的代码

文章目录 前言C#运行模式运行模式介绍三种模式区分代码 前言 编译模式和发布模式的代码不一样是非常正常的。比较常见的是数据库不一样。编译测试数据库和发布真实的数据库地址不一样。 C#运行模式 运行模式介绍 运行模式有三种&#xff1a; Debug 不进行优化&#xff0c;…...

【【萌新的STM32 学习-6】】

萌新的STM32 学习-6 BSP 文件夹&#xff0c;用于存放正点原子提供的板级支持包驱动代码&#xff0c;如&#xff1a;LED、蜂鸣器、按键等。 本章我们暂时用不到该文件夹&#xff0c;不过可以先建好备用。 CMSIS 文件夹&#xff0c;用于存放 CMSIS 底层代码&#xff08;ARM 和 ST…...

“深入解析JVM:探索Java虚拟机的工作原理“

标题&#xff1a;深入解析JVM&#xff1a;探索Java虚拟机的工作原理 摘要&#xff1a;本文将深入解析Java虚拟机&#xff08;JVM&#xff09;的工作原理&#xff0c;从字节码到执行过程&#xff0c;从内存模型到垃圾回收机制&#xff0c;逐步剖析JVM的核心组成部分和工作原理。…...

【目标检测系列】YOLOV2解读

为更好理解YOLOv2模型&#xff0c;请先移步&#xff0c;了解YOLOv1后才能更好的理解YOLOv2所做的改进。 前情回顾&#xff1a;【目标检测系列】YOLOV1解读_怀逸%的博客-CSDN博客 背景 通用的目标检测应该具备快速、准确且能过识别各种各样的目标的特点。自从引入神经网络以来&a…...

【深入浅出程序设计竞赛(基础篇)第一章 算法小白从0开始】

深入浅出程序设计竞赛&#xff08;基础篇&#xff09;第一章 算法小白从0开始 第一章 例题例1-1例1-2例1-3例1-4例1-5例1-6例1-7例1-8例1-9例1-10例1-11 第一章 课后习题1-11-21-31-4 第一章 例题 例1-1 #include<iostream> using namespace std;int main(){cout <&…...

openGauss学习笔记-36 openGauss 高级数据管理-TRUNCATE TABLE语句

文章目录 openGauss学习笔记-36 openGauss 高级数据管理-TRUNCATE TABLE语句36.1 语法格式36.2 参数说明36.3 示例 openGauss学习笔记-36 openGauss 高级数据管理-TRUNCATE TABLE语句 清理表数据&#xff0c;TRUNCATE TABLE用于删除表的数据&#xff0c;但不删除表结构。也可以…...

ChatGPT生成文本检测器算法挑战大赛

ChatGPT生成文本检测器算法挑战大 比赛链接&#xff1a;2023 iFLYTEK A.I.开发者大赛-讯飞开放平台 (xfyun.cn) 1、数据加载和预处理 import numpy as np import pandas as pd from sklearn.model_selection import train_test_split, cross_val_predict from sklearn.linea…...

O2OA开发平台实施入门指南

O2OA&#xff08;翱途&#xff09;开发平台&#xff0c;是一款适用于协同办公系统开发与实施的基础平台&#xff0c;说到底&#xff0c;它也是一款快速开发平台。开发者可以基于平台提供的能力完成门户、流程、信息相关的业务功能开发。 既然定位为开发平台&#xff0c;那么开…...

服装行业多模态算法个性化产品定制方案 | 京东云技术团队

一、项目背景 AI赋能服装设计师&#xff0c;设计好看、好穿、好卖的服装 传统服装行业痛点 • 设计师无法准确捕捉市场趋势&#xff0c;抓住中国潮流 • 上新周期长&#xff0c;高库存滞销风险大 • 基本款居多&#xff0c;难以满足消费者个性化需求 解决方案 • GPT数据…...

MySQL表空间结构与页、区、段的定义

文章目录 一、概念引入1、页2、区3、段 二、页的结构1、File Header2、FIle Trailer 三、区的结构1、分类2、XDES Entry3、XDES Entry链表 四、段的结构五、独立表空间1、FSP_HDR页2、XDES页3、IBUF_BITMAP页4、INODE页5、INDEX页 六、系统表空间 一、概念引入 1、页 InnoDB是…...