当前位置: 首页 > news >正文

Python-OpenCV中的图像处理-图像阀值

Python-OpenCV中的图像处理-图像阀值

  • 图像阈值
    • 单阈值
    • 自适应阈值
    • Otsu's二值化

图像阈值

单阈值

与名字一样,这种方法非常简单。但像素值高于阈值时,我们给这个像素赋予一个新值(可能是白色),否则我们给它赋予另外一种颜色(也许是黑色)。这个函数就是 cv2.threshhold()。这个函数的第一个参数就是原图像,原图像应该是灰度图。第二个参数就是用来对像素值进行分类的阈值。第三个参数就是当像素值高于(有时是小于)阈值时应该被赋予的新的像素值。 OpenCV提供了多种不同的阈值方法,这是有第四个参数来决定的。这些方法包括:

  • cv2.THRESH_BINARY
  • cv2.THRESH_BINARY_INV
  • cv2.THRESH_TRUNC
  • cv2.THRESH_TOZERO
  • cv2.THRESH_TOZERO_INV
import numpy as np
import cv2
from matplotlib import pyplot as plt# 单阈值
img = cv2.imread('./resource/opencv/image/colorscale_bone.jpg', cv2.IMREAD_GRAYSCALE)ret,thresh1 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
ret,thresh2 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY_INV)
ret,thresh3 = cv2.threshold(img, 127, 255, cv2.THRESH_TRUNC)
ret,thresh4 = cv2.threshold(img, 127, 255, cv2.THRESH_TOZERO)
ret,thresh5 = cv2.threshold(img, 127, 255, cv2.THRESH_TOZERO_INV)titles = ['original', 'binary', 'binary-inv', 'trunc', 'tozero', 'tozero-inv']
images = [img, thresh1, thresh2, thresh3, thresh4, thresh5]for i in range(6):plt.subplot(2,3,i+1), plt.imshow(images[i], 'gray'),plt.title(titles[i])plt.xticks([]),plt.yticks([])plt.show()

在这里插入图片描述

自适应阈值

在前面的部分我们使用是全局阈值,整幅图像采用同一个数作为阈值。当时这种方法并不适应与所有情况,尤其是当同一幅图像上的不同部分的具有不同亮度时。这种情况下我们需要采用自适应阈值。此时的阈值是根据图像上的每一个小区域计算与其对应的阈值。因此在同一幅图像上的不同区域采用的是不同的阈值,从而使我们能在亮度不同的情况下得到更好的结果。这种方法需要我们指定三个参数,返回值只有一个。

  • Adaptive Method- 指定计算阈值的方法。
    – cv2.ADPTIVE_THRESH_MEAN_C:阈值取自相邻区域的平
    均值
    – cv2.ADPTIVE_THRESH_GAUSSIAN_C:阈值取值相邻区域
    的加权和,权重为一个高斯窗口。
  • Block Size - 邻域大小(用来计算阈值的区域大小)。
  • C - 这就是是一个常数,阈值就等于的平均值或者加权平均值减去这个常
    数。
import numpy as np
import cv2
from matplotlib import pyplot as plt# 自适应阀值
img = cv2.imread('./resource/opencv/image/sudoku.png', cv2.IMREAD_GRAYSCALE)# 中值滤波
img = cv2.medianBlur(img, 5)(ret, th1) = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)# 自适应阀值 11 为block size, 2为C值
th2 = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2)
th3 = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2)titles = ['original image', 'global thresholding(v=127)', 'Adaptive mean thresholding', 'adaptive gaussian thresholding']
images =[img, th1, th2, th3]for i in range(4):plt.subplot(2,2,i+1), plt.imshow(images[i], 'gray')plt.title(titles[i])plt.xticks([]), plt.yticks([])plt.show()

在这里插入图片描述

Otsu’s二值化

在使用全局阈值时,我们就是随便给了一个数来做阈值,那我们怎么知道我们选取的这个数的好坏呢?答案就是不停的尝试。如果是一副双峰图像(简单来说双峰图像是指图像直方图中存在两个峰)呢?我们岂不是应该在两个峰之间的峰谷选一个值作为阈值?这就是 Otsu 二值化要做的。简单来说就是对一副双峰图像自动根据其直方图计算出一个阈值。(对于非双峰图像,这种方法得到的结果可能会不理想)。这里用到到的函数还是 cv2.threshold(),但是需要多传入一个参数( flag): cv2.THRESH_OTSU。这时要把阈值设为 0。然后算法会找到最
优阈值,这个最优阈值就是返回值 retVal。如果不使用 Otsu 二值化,返回的
retVal 值与设定的阈值相等。下面的例子中,输入图像是一副带有噪声的图像。第一种方法,我们设127 为全局阈值。第二种方法,我们直接使用 Otsu 二值化。第三种方法,我们首先使用一个 5x5 的高斯核除去噪音,然后再使用 Otsu 二值化。

import numpy as np
import cv2
from matplotlib import pyplot as pltimg = cv2.imread('./resource/opencv/image/Template_Matching_Correl_Result_2.jpg', cv2.IMREAD_GRAYSCALE)(ret1,th1) = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
(ret2,th2) = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)# (5,5)为高斯核的大小,0为标准差
blur = cv2.GaussianBlur(img, (5,5), 0) # 高斯滤波# 阀值一定要设为0
(ret3, th3) = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)images = [img, 0, th1,img, 0, th2,img, 0, th3]
titles = ['original noisy image', 'histogram', 'global thresholding(v=127)','original noisy image','histogram',"otsu's thresholding",'gaussian giltered image','histogram',"otus's thresholding"]for i in range(3):plt.subplot(3,3,i*3+1), plt.imshow(images[i*3], 'gray')plt.title(titles[i*3]), plt.xticks([]), plt.yticks([])plt.subplot(3,3,i*3+2),plt.hist(images[i*3].ravel(),256)plt.title(titles[i*3+1]),plt.xticks([]),plt.yticks([])plt.subplot(3,3,i*3+3),plt.imshow(images[i*3+2],'gray')plt.title(titles[i*3+2]),plt.xticks([]),plt.yticks([])
plt.show()

在这里插入图片描述

相关文章:

Python-OpenCV中的图像处理-图像阀值

Python-OpenCV中的图像处理-图像阀值 图像阈值单阈值自适应阈值Otsus二值化 图像阈值 单阈值 与名字一样,这种方法非常简单。但像素值高于阈值时,我们给这个像素赋予一个新值(可能是白色),否则我们给它赋予另外一种颜…...

VB+SQL酒店客房管理设计与实现

摘要 二十一世纪是信息技术的时代,计算机已经应用到了各行各业中。采用计算机信息管理技术,可以有效的降低企业的管理成本,提高企业内部的工作效率。 本文从天天宾馆客房客房管理的一般流程出发,设计了一套天天宾馆客房管理信息系统,它可以管理天天宾馆客房中所有的客房的…...

【Linux】从0到1实现一个进度条小程序

个人主页:🍝在肯德基吃麻辣烫 我的gitee:gitee仓库 分享一句喜欢的话:热烈的火焰,冰封在最沉默的火山深处 文章目录 前言一、理解回车 \r 和换行 \n二、初步认识缓冲区1. 认识第一个函数:sleep2.观察缓冲区…...

江南大学轴承数据故障诊断(利用一维CNN进行故障诊断,代码和数据放在压缩包,无需修改任何东西,解压缩后直接运行,有详细注释)

1.江南大学轴承数据集介绍 采样频率:50khz,采样时间:10s 转速:600 800 1000/rpm 内圈:ib 外圈:ob 滚动体:tb 正常:N 以600转速下的内圈故障数据为例展示: 开始数据…...

【网络基础实战之路】基于BGP协议连接三个AS区域的实战详解

系列文章传送门: 【网络基础实战之路】设计网络划分的实战详解 【网络基础实战之路】一文弄懂TCP的三次握手与四次断开 【网络基础实战之路】基于MGRE多点协议的实战详解 【网络基础实战之路】基于OSPF协议建立两个MGRE网络的实验详解 【网络基础实战之路】基于…...

基于Python爬虫+词云图+情感分析对某东上完美日记的用户评论分析

🤵‍♂️ 个人主页:艾派森的个人主页 ✍🏻作者简介:Python学习者 🐋 希望大家多多支持,我们一起进步!😄 如果文章对你有帮助的话, 欢迎评论 💬点赞&#x1f4…...

Day 26 C++ list容器(链表)

文章目录 list基本概念定义结构双向迭代器优点缺点List和vector区别存储结构内存管理迭代器稳定性随机访问效率 list构造函数——创建list容器函数原型示例 list 赋值和交换函数原型 list 大小操作函数原型示例 list 插入和删除函数原型示例 list 数据存取函数原型注意示例 lis…...

【深度学习注意力机制系列】—— SKNet注意力机制(附pytorch实现)

SKNet(Selective Kernel Network)是一种用于图像分类和目标检测任务的深度神经网络架构,其核心创新是引入了选择性的多尺度卷积核(Selective Kernel)以及一种新颖的注意力机制,从而在不增加网络复杂性的情况…...

Markdown语法和表情

Markdown语法和表情 1. 标题2. 段落3. 加粗和斜体4.分隔线5.删除线6.下划线7.引用8.列表9.链接10. 图片11. 代码12.Markdown 表格其他1.支持的 HTML 元素2.转义3.公式 Markdown表情参考 Markdown 是一种轻量级的标记语言,用于简洁地编写文本并转换为HTML。它的语法简…...

CSDN编纂目录索引跳转设置

CSDN编纂目录索引跳转设置 文章目录 题目第一小节第二小节第三小节结论 题目 第一小节 第二小节 第三小节 结论...

cpu的架构

明天继续搞一下cache,还有后面的, 下面是cpu框架图 开始解释cpu 1.控制器 控制器又称为控制单元(Control Unit,简称CU),下面是控制器的组成 1.指令寄存器IR:是用来存放当前正在执行的的一条指令。当一条指令需要被执行时,先按…...

FastAPI和Flask:构建RESTful API的比较分析

Python 是一种功能强大的编程语言,广泛应用于 Web 开发领域。FastAPI 和 Flask 是 Python Web 开发中最受欢迎的两个框架。本文将对 FastAPI 和 Flask 进行综合对比,探讨它们在语法和表达能力、生态系统和社区支持、性能和扩展性、开发工具和调试支持、安…...

用康虎云报表打印二维码

用康虎云报表打印二维码 1 安装: 下载地址: https://www.khcloud.net/cfprint_download, 选择Odoo免代码报表模块和自定义SQL报表模块 下载下来后解压缩,一共有四个模块 cf_report_designer # 报表设计模块 cf_sale_print_ext # 演示模块 cf_sql_report cfprint …...

网盘直链下载助手

一、插件介绍 1.介绍 这是一款免费开源获取网盘文件真实下载地址的油猴脚本,基于 PCSAPI,支持 Windows,Mac,Linux 等多平台,支持 IDM,XDown,Aria2 等多线程下载工具,支持 JSON-RPC…...

【EI复现】售电市场环境下电力用户选择售电公司行为研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...

并发——何谓悲观锁与乐观锁

乐观锁对应于生活中乐观的人总是想着事情往好的方向发展,悲观锁对应于生活中悲观的人总是想着事情往坏的方向发展。这两种人各有优缺点,不能不以场景而定说一种人好于另外一种人。 悲观锁 总是假设最坏的情况,每次去拿数据的时候都认为别人会…...

【C++】模板

1.模板的概念 2.函数模板基本语法 3.未完待续。。。 https://www.bilibili.com/video/BV1et411b73Z?p169&spm_id_frompageDriver&vd_sourcefb8dcae0aee3f1aab700c21099045395...

【Echart地图】jQuery+html5基于echarts.js中国地图点击弹出下级城市地图(附完整源码下载)

文章目录 写在前面涉及知识点实现效果1、实现中国地图板块1.1创建dom元素1.2实现地图渲染1.3点击地图进入城市及返回 2、源码分享2.1 百度网盘2.2 123云盘2.3 邮箱留言 总结 写在前面 这篇文章其实我主要是之前留下的一个心结,依稀记得之前做了一个大屏项目的时候&…...

Python AI 绘画

Python AI 绘画 本文我们将为大家介绍如何基于一些开源的库来搭建一套自己的 AI 作图工具。 需要使用的开源库为 Stable Diffusion web UI,它是基于 Gradio 库的 Stable Diffusion 浏览器界面 Stable Diffusion web UI GitHub 地址:GitHub - AUTOMATI…...

mongodb:环境搭建

mongodb 是什么? MongoDB是一款为web应用程序和互联网基础设施设计的数据库管理系统。没错MongoDB就是数据库,是NoSQL类型的数据库 为什么要用mongodb? (1)MongoDB提出的是文档、集合的概念,使用BSON&am…...

进程地址空间(比特课总结)

一、进程地址空间 1. 环境变量 1 )⽤户级环境变量与系统级环境变量 全局属性:环境变量具有全局属性,会被⼦进程继承。例如当bash启动⼦进程时,环 境变量会⾃动传递给⼦进程。 本地变量限制:本地变量只在当前进程(ba…...

【网络安全产品大调研系列】2. 体验漏洞扫描

前言 2023 年漏洞扫描服务市场规模预计为 3.06(十亿美元)。漏洞扫描服务市场行业预计将从 2024 年的 3.48(十亿美元)增长到 2032 年的 9.54(十亿美元)。预测期内漏洞扫描服务市场 CAGR(增长率&…...

大数据零基础学习day1之环境准备和大数据初步理解

学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 (1)设置网关 打开VMware虚拟机,点击编辑…...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍

文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结: 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析: 实际业务去理解体会统一注…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序

一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...

Unit 1 深度强化学习简介

Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...

IT供电系统绝缘监测及故障定位解决方案

随着新能源的快速发展,光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域,IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选,但在长期运行中,例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...

【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)

1.获取 authorizationCode: 2.利用 authorizationCode 获取 accessToken:文档中心 3.获取手机:文档中心 4.获取昵称头像:文档中心 首先创建 request 若要获取手机号,scope必填 phone,permissions 必填 …...

sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!

简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求,并检查收到的响应。它以以下模式之一…...

SQL慢可能是触发了ring buffer

简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...