Diffusion扩散模型学习4——Stable Diffusion原理解析-inpaint修复图片为例
Diffusion扩散模型学习4——Stable Diffusion原理解析-inpaint修复图片为例
- 学习前言
- 源码下载地址
- 原理解析
- 一、先验知识
- 二、什么是inpaint
- 三、Stable Diffusion中的inpaint
- 1、开源的inpaint模型
- 2、基于base模型inpaint
- 四、inpaint流程
- 1、输入图片到隐空间的编码
- 2、文本编码
- 3、采样流程
- a、生成初始噪声
- b、对噪声进行N次采样
- c、如何引入denoise
- i、加噪的逻辑
- ii、mask处理
- iii、采样处理
- 4、隐空间解码生成图片
- Inpaint预测过程代码
学习前言
Inpaint是Stable Diffusion中的常用方法,一起简单学习一下。

源码下载地址
https://github.com/bubbliiiing/stable-diffusion
喜欢的可以点个star噢。
原理解析
一、先验知识
txt2img的原理如博文
Diffusion扩散模型学习2——Stable Diffusion结构解析-以文本生成图像(文生图,txt2img)为例
img2img的原理如博文
Diffusion扩散模型学习3——Stable Diffusion结构解析-以图像生成图像(图生图,img2img)为例
二、什么是inpaint
Inpaint是一项图片修复技术,可以从图片上去除不必要的物体,让您轻松摆脱照片上的水印、划痕、污渍、标志等瑕疵。
一般来讲,图片的inpaint过程可以理解为两步:
1、找到图片中的需要重绘的部分,比如上述提到的水印、划痕、污渍、标志等。
2、去掉水印、划痕、污渍、标志等,自动填充图片应该有的内容。
三、Stable Diffusion中的inpaint
Stable Diffusion中的inpaint的实现方式有两种:
1、开源的inpaint模型
参考链接:inpaint_st.py,该模型经过特定的训练。需要输入符合需求的图片才可以进行inpaint。
需要注意的是,该模型使用的config文件发生了改变,改为v1-inpainting-inference.yaml。其中最显著的区别就是unet_config的in_channels从4变成了9。相比于原来的4,我们增加了4+1(5)个通道的信息。

4+1(5)个通道的信息应该是什么呢?一个是被mask后的图像,对应其中的4;一个是mask的图像,对应其中的1。

- 1、我们首先把图片中需要inpaint的部分给置为0,获得被mask后的图像,然后利用VAE编码,VAE输出通道为4,假设被mask的图像是[512, 512, 3],此时我们获得了一个[4, 64, 64]的隐含层特征,对应其中的4。
- 2、然后需要对mask进行下采样,采样到和隐含层特征一样的高宽,即mask的shape为[1, 512, 512],利用下采样获得[1, 64, 64]的mask。本质上,我们获得了隐含层的mask。
- 3、然后我们将 下采样后的被mask的图像 和 隐含层的mask 在通道上做一个堆叠,获得一个[5, 64, 64]的特征,然后将此特征与随机初始化的高斯噪声堆叠,则获得了上述图片中的9通道特征。
此后采样的过程与常规采样方式一样,全部采样完成后,使用VAE解码,获得inpaint后的图像。
可以感受到上述的方式必须基于一个已经训练好的unet模型,这要求训练者需要有足够的算力去完成这一个工作,对大众开发者而言并不友好。因此该方法很少在实际中得到使用。
2、基于base模型inpaint
如果我们必须训练一个inpaint模型才能对当前的模型进行inpaint,那就太麻烦了,有没有什么方法可以不需要训练就能inpaint呢?
诶诶,当然有哈。
Stable Diffusion就是一个生成模型,如果我们可以做到让Stable Diffusion只生成指定区域,并且在生成指定区域的时候参考其它区域,那么它自身便是一个天然的inpaint模型。

如何做到这一点呢?我们需要结合img2img方法,我们首先考虑inpaint的两个输入:一个是原图,另外一个是mask图。
在img2img中,存在一个denoise参数,假设我们设置denoise数值为0.8,总步数为20步,那么我们会对输入图片进行0.8x20次的加噪声。如果我们可以在这个加噪声图片的基础上进行重建,那么网络必然会考虑加噪声图(也就对应了原始图片的特征)。
在图像重建的20步中,对隐含层特征,我们利用mask将不重建的地方都替换成 原图按照当前步数加噪后的隐含层特征。此时不重建的地方的特征都由输入图片决定。然后不替换需要重建的地方进行,利用unet计算噪声进行重建。
具体部分,可看下面的循环与代码,我已经标注出了 替换特征的地方,在这里mask等于1的地方保留原图,mask等于0的地方不断的重建。
- 将原图x0映射到VAE隐空间,得到img_orig;
- 初始化随机噪声img(也可以使用img_orig完全加噪后的噪声);
- 开始循环:
- 对于每一次时间步,根据时间步生成img_orig对应的噪声特征;
- 一个是基于上个时间步降噪后得到的img,一个是基于原图得到的img_orig。通过mask将两者融合, i m g = i m g _ o r i g ∗ m a s k + ( 1.0 − m a s k ) ∗ i m g img = img\_orig * mask + (1.0 - mask) * img img=img_orig∗mask+(1.0−mask)∗img。即,将原图中的非mask区域和噪声图中的mask区域进行融合,得到新的噪声图。
- 然后继续去噪声直到结束。
由于该方法不需要训练新模型,并且重建效果也不错,所以该方法比较通用。
for i, step in enumerate(iterator):# index是用来取得对应的调节参数的index = total_steps - i - 1# 将步数拓展到bs维度ts = torch.full((b,), step, device=device, dtype=torch.long)# --------------------------------------------------------------------------------- ## 替换特征的地方# 用于进行局部的重建,对部分区域的隐向量进行mask。# 对传入unet前的隐含层特征,我们利用mask将不重建的地方都替换成 原图加噪后的隐含层特征# self.model.q_sample用于对输入图片进行ts步数的加噪# --------------------------------------------------------------------------------- #if mask is not None:assert x0 is not Noneimg_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?img = img_orig * mask + (1. - mask) * img# 进行采样outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,quantize_denoised=quantize_denoised, temperature=temperature,noise_dropout=noise_dropout, score_corrector=score_corrector,corrector_kwargs=corrector_kwargs,unconditional_guidance_scale=unconditional_guidance_scale,unconditional_conditioning=unconditional_conditioning)img, pred_x0 = outs# 回调函数if callback: callback(i)if img_callback: img_callback(pred_x0, i)if index % log_every_t == 0 or index == total_steps - 1:intermediates['x_inter'].append(img)intermediates['pred_x0'].append(pred_x0)
四、inpaint流程
根据通用性,本文主要以上述提到的基于base模型inpaint进行解析。
1、输入图片到隐空间的编码

inpaint技术衍生于图生图技术,所以同样需要指定一张参考的图像,然后在这个参考图像上开始工作。
利用VAE编码器对这张参考图像进行编码,使其进入隐空间,只有进入了隐空间,网络才知道这个图像是什么。
此时我们便获得在隐空间的图像,后续会在这个 隐空间加噪后的图像 的基础上进行采样。
2、文本编码

文本编码的思路比较简单,直接使用CLIP的文本编码器进行编码就可以了,在代码中定义了一个FrozenCLIPEmbedder类别,使用了transformers库的CLIPTokenizer和CLIPTextModel。
在前传过程中,我们对输入进来的文本首先利用CLIPTokenizer进行编码,然后使用CLIPTextModel进行特征提取,通过FrozenCLIPEmbedder,我们可以获得一个[batch_size, 77, 768]的特征向量。
class FrozenCLIPEmbedder(AbstractEncoder):"""Uses the CLIP transformer encoder for text (from huggingface)"""LAYERS = ["last","pooled","hidden"]def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77,freeze=True, layer="last", layer_idx=None): # clip-vit-base-patch32super().__init__()assert layer in self.LAYERS# 定义文本的tokenizer和transformerself.tokenizer = CLIPTokenizer.from_pretrained(version)self.transformer = CLIPTextModel.from_pretrained(version)self.device = deviceself.max_length = max_length# 冻结模型参数if freeze:self.freeze()self.layer = layerself.layer_idx = layer_idxif layer == "hidden":assert layer_idx is not Noneassert 0 <= abs(layer_idx) <= 12def freeze(self):self.transformer = self.transformer.eval()# self.train = disabled_trainfor param in self.parameters():param.requires_grad = Falsedef forward(self, text):# 对输入的图片进行分词并编码,padding直接padding到77的长度。batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,return_overflowing_tokens=False, padding="max_length", return_tensors="pt")# 拿出input_ids然后传入transformer进行特征提取。tokens = batch_encoding["input_ids"].to(self.device)outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer=="hidden")# 取出所有的tokenif self.layer == "last":z = outputs.last_hidden_stateelif self.layer == "pooled":z = outputs.pooler_output[:, None, :]else:z = outputs.hidden_states[self.layer_idx]return zdef encode(self, text):return self(text)
3、采样流程

a、生成初始噪声
在inpaint中,我们的初始噪声获取于参考图片,参考第一步获得Latent特征后,使用该Latent特征基于DDIM Sampler进行加噪,获得输入图片加噪后的特征。
此处先不引入denoise参数,所以直接20步噪声加到底。在该步,我们执行了下面两个操作:
- 将原图x0映射到VAE隐空间,得到img_orig;
- 初始化随机噪声img(也可以使用img_orig完全加噪后的噪声);
b、对噪声进行N次采样
我们便从上一步获得的初始特征开始去噪声。
我们会对ddim_timesteps的时间步取反,因为我们现在是去噪声而非加噪声,然后对其进行一个循环,循环的代码如下:
循环中有一个mask,它的作用是用于进行局部的重建,对部分区域的隐向量进行mask,在此前我们并未用到,这一次我们需要用到了。
- 对于每一次时间步,根据时间步生成img_orig对应的加噪声特征;
- 一个是基于上个时间步降噪后得到的img;一个是基于原图得到的img_orig。我们通过mask将两者融合, i m g = i m g _ o r i g ∗ m a s k + ( 1.0 − m a s k ) ∗ i m g img = img\_orig * mask + (1.0 - mask) * img img=img_orig∗mask+(1.0−mask)∗img。即,将原图中的非mask区域和噪声图中的mask区域进行融合,得到新的噪声图。
- 然后继续去噪声直到结束。
for i, step in enumerate(iterator):# index是用来取得对应的调节参数的index = total_steps - i - 1# 将步数拓展到bs维度ts = torch.full((b,), step, device=device, dtype=torch.long)# --------------------------------------------------------------------------------- ## 替换特征的地方# 用于进行局部的重建,对部分区域的隐向量进行mask。# 对传入unet前的隐含层特征,我们利用mask将不重建的地方都替换成 原图加噪后的隐含层特征# self.model.q_sample用于对输入图片进行ts步数的加噪# --------------------------------------------------------------------------------- #if mask is not None:assert x0 is not Noneimg_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?img = img_orig * mask + (1. - mask) * img# 进行采样outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,quantize_denoised=quantize_denoised, temperature=temperature,noise_dropout=noise_dropout, score_corrector=score_corrector,corrector_kwargs=corrector_kwargs,unconditional_guidance_scale=unconditional_guidance_scale,unconditional_conditioning=unconditional_conditioning)img, pred_x0 = outs# 回调函数if callback: callback(i)if img_callback: img_callback(pred_x0, i)if index % log_every_t == 0 or index == total_steps - 1:intermediates['x_inter'].append(img)intermediates['pred_x0'].append(pred_x0)return img, intermediates

c、如何引入denoise
上述代码是官方自带的基于base模型的可用于inpaint的代码,但问题在于并未考虑denoise参数。
假设我们对生成图像的某一区域不满意,但是不满意的不多,其实我们不需要完全进行重建,只需要重建一点点就行了,那么此时我们便需要引入denoise参数,表示我们要重建的强度。
i、加噪的逻辑
同样,我们的初始噪声获取于参考图片,参考第一步获得Latent特征后,使用该Latent特征和denoise参数基于DDIM Sampler进行加噪,获得输入图片加噪后的特征。
加噪的逻辑如下:
- denoise可认为是重建的比例,1代表全部重建,0代表不重建;
- 假设我们设置denoise数值为0.8,总步数为20步;我们会对输入图片进行0.8x20次的加噪声,剩下4步不加,可理解为80%的特征,保留20%的特征;不过就算加完20步噪声,原始输入图片的信息还是有一点保留的,不是完全不保留。
with torch.no_grad():if seed == -1:seed = random.randint(0, 65535)seed_everything(seed)# ----------------------- ## 对输入图片进行编码并加噪# ----------------------- #if image_path is not None:img = HWC3(np.array(img, np.uint8))img = torch.from_numpy(img.copy()).float().cuda() / 127.0 - 1.0img = torch.stack([img for _ in range(num_samples)], dim=0)img = einops.rearrange(img, 'b h w c -> b c h w').clone()if vae_fp16:img = img.half()model.first_stage_model = model.first_stage_model.half()else:model.first_stage_model = model.first_stage_model.float()ddim_sampler.make_schedule(ddim_steps, ddim_eta=eta, verbose=True)t_enc = min(int(denoise_strength * ddim_steps), ddim_steps - 1)# 获得VAE编码后的隐含层向量z = model.get_first_stage_encoding(model.encode_first_stage(img))x0 = z# 获得加噪后的隐含层向量z_enc = ddim_sampler.stochastic_encode(z, torch.tensor([t_enc] * num_samples).to(model.device))z_enc = z_enc.half() if sd_fp16 else z_enc.float()
ii、mask处理
我们需要对mask进行下采样,使其和上述获得的加噪后的特征的shape一样。
if mask_path is not None:mask = torch.from_numpy(mask).to(model.device)mask = torch.nn.functional.interpolate(mask, size=z_enc.shape[-2:])
iii、采样处理
此时,因为使用到了denoise参数,我们要基于img2img中的decode方法进行采样。
由于decode方法中不存在mask与x0参数,我们补一下:
@torch.no_grad()
def decode(self, x_latent, cond, t_start, mask, x0, unconditional_guidance_scale=1.0, unconditional_conditioning=None,use_original_steps=False):# 使用ddim的时间步# 这里内容看起来很多,但是其实很少,本质上就是取了self.ddim_timesteps,然后把它reversed一下timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timestepstimesteps = timesteps[:t_start]time_range = np.flip(timesteps)total_steps = timesteps.shape[0]print(f"Running DDIM Sampling with {total_steps} timesteps")iterator = tqdm(time_range, desc='Decoding image', total=total_steps)x_dec = x_latentfor i, step in enumerate(iterator):index = total_steps - i - 1ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)# --------------------------------------------------------------------------------- ## 替换特征的地方# 用于进行局部的重建,对部分区域的隐向量进行mask。# 对传入unet前的隐含层特征,我们利用mask将不重建的地方都替换成 原图加噪后的隐含层特征# self.model.q_sample用于对输入图片进行ts步数的加噪# --------------------------------------------------------------------------------- #if mask is not None:assert x0 is not Noneimg_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?x_dec = img_orig * mask + (1. - mask) * x_dec# 进行单次采样x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,unconditional_guidance_scale=unconditional_guidance_scale,unconditional_conditioning=unconditional_conditioning)return x_dec
4、隐空间解码生成图片

通过上述步骤,已经可以多次采样获得结果,然后我们便可以通过隐空间解码生成图片。
隐空间解码生成图片的过程非常简单,将上文多次采样后的结果,使用decode_first_stage方法即可生成图片。
在decode_first_stage方法中,网络调用VAE对获取到的64x64x3的隐向量进行解码,获得512x512x3的图片。
@torch.no_grad()
def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):if predict_cids:if z.dim() == 4:z = torch.argmax(z.exp(), dim=1).long()z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)z = rearrange(z, 'b h w c -> b c h w').contiguous()z = 1. / self.scale_factor * z# 一般无需分割输入,所以直接将x_noisy传入self.model中,在下面else进行if hasattr(self, "split_input_params"):......else:if isinstance(self.first_stage_model, VQModelInterface):return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)else:return self.first_stage_model.decode(z)
Inpaint预测过程代码
整体预测代码如下:
import os
import randomimport cv2
import einops
import numpy as np
import torch
from PIL import Image
from pytorch_lightning import seed_everythingfrom ldm_hacked import *# ----------------------- #
# 使用的参数
# ----------------------- #
# config的地址
config_path = "model_data/sd_v15.yaml"
# 模型的地址
model_path = "model_data/v1-5-pruned-emaonly.safetensors"
# fp16,可以加速与节省显存
sd_fp16 = True
vae_fp16 = True# ----------------------- #
# 生成图片的参数
# ----------------------- #
# 生成的图像大小为input_shape,对于img2img会进行Centter Crop
input_shape = [512, 768]
# 一次生成几张图像
num_samples = 1
# 采样的步数
ddim_steps = 20
# 采样的种子,为-1的话则随机。
seed = 12345
# eta
eta = 0
# denoise强度,for img2img
denoise_strength = 1.00# ----------------------- #
# 提示词相关参数
# ----------------------- #
# 提示词
prompt = "a cute dog, with yellow leaf, trees"
# 正面提示词
a_prompt = "best quality, extremely detailed"
# 负面提示词
n_prompt = "longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality"
# 正负扩大倍数
scale = 9
# img2img使用,如果不想img2img这设置为None。
image_path = "imgs/test_imgs/cat.jpg"
# inpaint使用,如果不想inpaint这设置为None;inpaint使用需要结合img2img。
# 注意mask图和原图需要一样大
mask_path = "imgs/test_imgs/cat_mask.jpg"# ----------------------- #
# 保存路径
# ----------------------- #
save_path = "imgs/outputs_imgs"# ----------------------- #
# 创建模型
# ----------------------- #
model = create_model(config_path).cpu()
model.load_state_dict(load_state_dict(model_path, location='cuda'), strict=False)
model = model.cuda()
ddim_sampler = DDIMSampler(model)
if sd_fp16:model = model.half()if image_path is not None:img = Image.open(image_path)img = crop_and_resize(img, input_shape[0], input_shape[1])if mask_path is not None:mask = Image.open(mask_path).convert("L")mask = crop_and_resize(mask, input_shape[0], input_shape[1])mask = np.array(mask)mask = mask.astype(np.float32) / 255.0mask = mask[None,None]mask[mask < 0.5] = 0mask[mask >= 0.5] = 1with torch.no_grad():if seed == -1:seed = random.randint(0, 65535)seed_everything(seed)# ----------------------- ## 对输入图片进行编码并加噪# ----------------------- #if image_path is not None:img = HWC3(np.array(img, np.uint8))img = torch.from_numpy(img.copy()).float().cuda() / 127.0 - 1.0img = torch.stack([img for _ in range(num_samples)], dim=0)img = einops.rearrange(img, 'b h w c -> b c h w').clone()if vae_fp16:img = img.half()model.first_stage_model = model.first_stage_model.half()else:model.first_stage_model = model.first_stage_model.float()ddim_sampler.make_schedule(ddim_steps, ddim_eta=eta, verbose=True)t_enc = min(int(denoise_strength * ddim_steps), ddim_steps - 1)# 获得VAE编码后的隐含层向量z = model.get_first_stage_encoding(model.encode_first_stage(img))x0 = z# 获得加噪后的隐含层向量z_enc = ddim_sampler.stochastic_encode(z, torch.tensor([t_enc] * num_samples).to(model.device))z_enc = z_enc.half() if sd_fp16 else z_enc.float()if mask_path is not None:mask = torch.from_numpy(mask).to(model.device)mask = torch.nn.functional.interpolate(mask, size=z_enc.shape[-2:])mask = 1 - mask# ----------------------- ## 获得编码后的prompt# ----------------------- #cond = {"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}un_cond = {"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}H, W = input_shapeshape = (4, H // 8, W // 8)if image_path is not None:samples = ddim_sampler.decode(z_enc, cond, t_enc, mask, x0, unconditional_guidance_scale=scale, unconditional_conditioning=un_cond)else:# ----------------------- ## 进行采样# ----------------------- #samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,shape, cond, verbose=False, eta=eta,unconditional_guidance_scale=scale,unconditional_conditioning=un_cond)# ----------------------- ## 进行解码# ----------------------- #x_samples = model.decode_first_stage(samples.half() if vae_fp16 else samples.float())x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)# ----------------------- #
# 保存图片
# ----------------------- #
if not os.path.exists(save_path):os.makedirs(save_path)
for index, image in enumerate(x_samples):cv2.imwrite(os.path.join(save_path, str(index) + ".jpg"), cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
相关文章:
Diffusion扩散模型学习4——Stable Diffusion原理解析-inpaint修复图片为例
Diffusion扩散模型学习4——Stable Diffusion原理解析-inpaint修复图片为例 学习前言源码下载地址原理解析一、先验知识二、什么是inpaint三、Stable Diffusion中的inpaint1、开源的inpaint模型2、基于base模型inpaint 四、inpaint流程1、输入图片到隐空间的编码2、文本编码3、…...
dns的负载分配是什么
DNS 负载分配是使用 DNS 系统对传入的网络流量进行分配的一种技术。这可以是基于多种策略来分配的,从简单的轮询到更复杂的基于地理位置或服务器健康状况的分配。下面是 DNS 负载分配的几种常见形式: 轮询(Round Robin)࿱…...
adb 通过wifi连接手机
adb 通过wifi连接手机 1. 电脑通过USB线连接手机2. 手机开启USB调试模式,开启手机开发者模式3.手机开启USB调试模式 更多设置-》开发者选项-》USB调试4.点击Wi-Fi 高级设置,可以查看到手机Wi-Fi的IP地址,此IP地址adb命令后面的ip地址…...
将应用设置成系统App/获取Android设备SN号
1,和系统签名一致;(签名设置签名文件) 2,配置Manifest 至此你的App就是一个系统App了,可以执行一些系统App才能有的操作,如获取机器SN号: public String getSerialNumber() {Strin…...
2.CUDA 编程手册中文版---编程模型
2.编程模型 更多精彩内容,请扫描下方二维码或者访问https://developer.nvidia.com/zh-cn/developer-program 来加入NVIDIA开发者计划 本章通过概述CUDA编程模型是如何在c中公开的,来介绍CUDA的主要概念。 编程接口中给出了对 CUDA C 的广泛描述。 本章…...
Claude 2、ChatGPT、Google Bard优劣势比较
Claude 2: 优势:Claude 2能够一次性处理多达10万个tokens(约7.5万个单词)。 tokens数量反映了模型可以处理的文本长度和上下文数量。tokens越多,模型理解语义的能力就越强)。它在法律、数学和编码等多个…...
Docker安装Hadoop分布式集群
一、准备环境 docker search hadoop docker pull sequenceiq/hadoop-docker docker images二、Hadoop集群搭建 1. 运行hadoop102容器 docker run --name hadoop102 -d -h hadoop102 -p 9870:9870 -p 19888:19888 -v /opt/data/hadoop:/opt/data/hadoop sequenceiq/hadoop-do…...
文盘 Rust -- tokio 绑定 cpu 实践
tokio 是 rust 生态中流行的异步运行时框架。在实际生产中我们如果希望 tokio 应用程序与特定的 cpu core 绑定该怎么处理呢?这次我们来聊聊这个话题。 首先我们先写一段简单的多任务程序。 use tokio::runtime; pub fn main() {let rt runtime::Builder::new_mu…...
微服务Ribbon-负载均衡策略和饥饿加载
目录 一、负载均衡策略 1.1 负载均衡策略介绍 1.2 自定义负载均衡策略 二、饥饿加载 (笔记整理自bilibili黑马程序员课程) 一、负载均衡策略 1.1 负载均衡策略介绍 负载均衡的规则都定义在IRule接口中,而IRule有很多不同的实现类&…...
uni-app 运行时报错“本应用使用HBuilderX x.x.x 或对应的cli版本编译,而手机端SDK版本是x.x.x。不匹配的版本可能造成应用异常”
uni-app 运行时报错“本应用使用HBuilderX x.x.x 或对应的cli版本编译,而手机端SDK版本是x.x.x。不匹配的版本可能造成应用异常” 出现原因 手机端SDK版本和HBuilderX版本不一致。 解决办法 方法一 项目根目录下找到 manifest.json 配置文件,选择源码…...
Windows使用docker desktop 安装kafka、zookeeper集群
docker-compose安装zookeeper集群 参考文章:http://t.csdn.cn/TtTYI https://blog.csdn.net/u010416101/article/details/122803105?spm1001.2014.3001.5501 准备工作: 在开始新建集群之前,新建好文件夹,用来挂载kafka、z…...
11 | 苹果十年财报分析
在本文中,我们将对苹果公司的财务报告进行深入分析,关注其销售收入、利润情况以及关键产品线的表现。我们将研究财报中的数据,挖掘背后的商业策略和市场动态,以便更好地了解苹果公司在不同市场环境下的业绩表现。通过对财报数据的解读和分析,我们将探讨苹果公司在竞争激烈…...
Zookeeper与Redis 对比
1. 为什么使用分布式锁? 使用分布式锁的目的,是为了保证同一时间只有一个 JVM 进程可以对共享资源进行操作。 根据锁的用途可以细分为以下两类: 1、 允许多个客户端操作共享资源,我们称为共享锁。 这种锁的一般是对共享资源具有幂…...
跨境商城服务平台搭建与开发(金融服务+税务管理)
随着全球电子商务的快速发展,跨境贸易已经成为一种新的商业趋势。在这个背景下,搭建一个跨境商城服务平台,提供金融服务、税务管理等一系列服务,可以极大地促进跨境贸易的发展。本文将详细阐述跨境商城服务平台搭建与开发的步骤。…...
docker配置文件
/etc/docker/daemon.json 文件作用 /etc/docker/daemon.json 文件是 Docker 配置文件,用于配置 Docker 守护进程的行为和参数。Docker 守护进程是负责管理和运行 Docker 容器的后台进程,通过修改 daemon.json 文件,可以对 Docker 守护进程进…...
Mysql数据库之单表查询
目录 一、练习时先导入数据如下: 二、查询验证导入是否成功 三、单表查询 四、where和having的区别 一、练习时先导入数据如下: 素材: 表名:worker-- 表中字段均为中文,比如 部门号 工资 职工号 参加工作 等 CRE…...
macos搭建appium-iOS自动化测试环境
目录 准备工作 安装必需的软件 安装appium 安装XCode 下载WDA工程 配置WDA工程 搭建appiumwda自动化环境 第一步:启动通过xcodebuild命令启动wda服务 分享一下如何在mac电脑上搭建一个完整的appium自动化测试环境 准备工作 前期需要准备的设备和账号&…...
日常工具 之 一些 / 方便好用 / 免费 / 在线 / 工具整理
日常工具 之 一些 / 方便好用 / 免费 / 在线 / 工具整理 目录 日常工具 之 一些 / 方便好用 / 免费 / 在线 / 工具整理 1、在线Json ,可以在线进行json 格式验证,解析转义等操作 2、Gif动图分解,在线把 gif 图分解成一张张单图 3、在线P…...
AWS 中文入门开发教学 50- S3 - 网关终端节点 - 私有网络访问S3的捷径
知识点 通过设置网关终端节点,使私有网段中的EC2也可以访问到S3服务官网 https://docs.aws.amazon.com/zh_cn/codeartifact/latest/ug/create-s3-gateway-endpoint.html 实战演习 通过网关访问S3 看图说话"> 实战步骤 创建一个可以访问S3的角色 KomaRoleS3FullAcc…...
windows使用/服务(13)戴尔电脑怎么设置通电自动开机
戴尔pc机器通电自启动 1、将主机显示器键盘鼠标连接好后,按主机电源键开机 2、在开机过程中按键盘"F12",进入如下界面,选择“BIOS SETUP” 3、选择“Power Management” 4、选择“AC Recovery”,点选“Power On”,点击“…...
从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路
进入2025年以来,尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断,但全球市场热度依然高涨,入局者持续增加。 以国内市场为例,天眼查专业版数据显示,截至5月底,我国现存在业、存续状态的机器人相关企…...
postgresql|数据库|只读用户的创建和删除(备忘)
CREATE USER read_only WITH PASSWORD 密码 -- 连接到xxx数据库 \c xxx -- 授予对xxx数据库的只读权限 GRANT CONNECT ON DATABASE xxx TO read_only; GRANT USAGE ON SCHEMA public TO read_only; GRANT SELECT ON ALL TABLES IN SCHEMA public TO read_only; GRANT EXECUTE O…...
江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命
在华东塑料包装行业面临限塑令深度调整的背景下,江苏艾立泰以一场跨国资源接力的创新实践,重新定义了绿色供应链的边界。 跨国回收网络:废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点,将海外废弃包装箱通过标准…...
【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)
可以使用Sqliteviz这个网站免费编写sql语句,它能够让用户直接在浏览器内练习SQL的语法,不需要安装任何软件。 链接如下: sqliteviz 注意: 在转写SQL语法时,关键字之间有一个特定的顺序,这个顺序会影响到…...
屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!
5月28日,中天合创屋面分布式光伏发电项目顺利并网发电,该项目位于内蒙古自治区鄂尔多斯市乌审旗,项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站,总装机容量为9.96MWp。 项目投运后,每年可节约标煤3670…...
反射获取方法和属性
Java反射获取方法 在Java中,反射(Reflection)是一种强大的机制,允许程序在运行时访问和操作类的内部属性和方法。通过反射,可以动态地创建对象、调用方法、改变属性值,这在很多Java框架中如Spring和Hiberna…...
Mobile ALOHA全身模仿学习
一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...
深度学习水论文:mamba+图像增强
🧀当前视觉领域对高效长序列建模需求激增,对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模,以及动态计算优势,在图像质量提升和细节恢复方面有难以替代的作用。 🧀因此短时间内,就有不…...
MFE(微前端) Module Federation:Webpack.config.js文件中每个属性的含义解释
以Module Federation 插件详为例,Webpack.config.js它可能的配置和含义如下: 前言 Module Federation 的Webpack.config.js核心配置包括: name filename(定义应用标识) remotes(引用远程模块࿰…...
Mysql故障排插与环境优化
前置知识点 最上层是一些客户端和连接服务,包含本 sock 通信和大多数jiyukehuduan/服务端工具实现的TCP/IP通信。主要完成一些简介处理、授权认证、及相关的安全方案等。在该层上引入了线程池的概念,为通过安全认证接入的客户端提供线程。同样在该层上可…...
