当前位置: 首页 > news >正文

OJ练习第151题——克隆图

克隆图

力扣链接:133. 克隆图

题目描述

给你无向 连通 图中一个节点的引用,请你返回该图的 深拷贝(克隆)。

示例

在这里插入图片描述

分析

对于一张图而言,它的深拷贝即构建一张与原图结构,值均一样的图,但是其中的节点不再是原来图节点的引用。因此,为了深拷贝出整张图,我们需要知道整张图的结构以及对应节点的值。

由于题目只给了我们一个节点的引用,因此为了知道整张图的结构以及对应节点的值,我们需要从给定的节点出发,进行「图的遍历」,并在遍历的过程中完成图的深拷贝。

为了防止多次遍历同一个节点,陷入死循环,我们需要用一种数据结构记录已经被克隆过的节点。

深度优先搜索


class Solution {private HashMap<Node, Node> visited = new HashMap<>();public Node cloneGraph(Node node) {if(node == null) return node;if(visited.containsKey(node)) return visited.get(node);Node cloneNode = new Node(node.val, new ArrayList());visited.put(node, cloneNode);for(Node neighbor : node.neighbors) {cloneNode.neighbors.add(cloneGraph(neighbor));}return cloneNode;}
}

广度优先搜索

class Solution {public Node cloneGraph(Node node) {if(node == null) return node;HashMap<Node, Node> visited = new HashMap<>();LinkedList<Node> queue = new LinkedList<Node>();queue.add(node);visited.put(node, new Node(node.val, new ArrayList()));while(!queue.isEmpty()) {Node n = queue.remove();for(Node neighbor : n.neighbors) {if(!visited.containsKey(neighbor)) {visited.put(neighbor, new Node(neighbor.val, new ArrayList()));queue.add(neighbor);}visited.get(n).neighbors.add(visited.get(neighbor));}}return visited.get(node);}
}

相关文章:

OJ练习第151题——克隆图

克隆图 力扣链接&#xff1a;133. 克隆图 题目描述 给你无向 连通 图中一个节点的引用&#xff0c;请你返回该图的 深拷贝&#xff08;克隆&#xff09;。 示例 分析 对于一张图而言&#xff0c;它的深拷贝即构建一张与原图结构&#xff0c;值均一样的图&#xff0c;但是…...

keepalived+lvs实现高可用

目录 环境 1.配置real-server服务器 2.配置keepalived和lvs 3.测试&#xff1a; 概述 keepalivedlvs实现高可用&#xff1a; lvs可以监控后端服务器&#xff0c;当服务器宕机之后可以对其进行故障切换。 keepalived是对VIP进行检测&#xff0c;当某一个主机的vip错误&…...

【Let‘s make it big】英语合集61~70

61(82) top-of-range it doesn’t get any better than this There seems to be a problem with my account What seems to be the problem withdraw money from my saving account charged an overdraft fee we don’t give loans to customers whose accounts are overdrawn…...

python实现图像的二分类

要实现图像的二分类&#xff0c;可以使用深度学习中的卷积神经网络&#xff08;Convolutional Neural Network, CNN&#xff09;模型。下面是一个使用Keras库实现的简单CNN模型示例&#xff1a; from keras.models import Sequential from keras.layers import Conv2D, MaxPoo…...

8.深浅拷贝和异常处理

开发中我们经常需要复制一个对象。如果直接用赋值会有下面问题: 8.1 浅拷贝 首先浅拷贝和深拷贝只针对引用类型 浅拷贝&#xff1a;拷贝的是地址 常见方法: 1.拷贝对象&#xff1a;Object.assgin() / 展开运算符{…obj} 拷贝对象 2.拷贝数组&#xff1a;Array.prototype.con…...

Element Plus el-table 数据为空时自定义内容【默认为 No Data】

1. 通过 Table 属性设置 <div class"el-plus-table"><el-table empty-text"暂无数据" :data"tableData" style"width: 100%"><el-table-column prop"date" label"Date" width"180" /&g…...

使用nginx和frp实现高效内网穿透:简单配置,畅通无阻

I. 引言 A. 介绍内网穿透的概念和用途 内网穿透是一种网络技术&#xff0c;它允许用户通过公共网络访问位于私有网络&#xff08;内网&#xff09;中的资源和服务。在传统的网络环境中&#xff0c;内网通常是由路由器或防火墙保护的&#xff0c;无法直接从外部网络访问内部资…...

Python土力学与基础工程计算.PDF-螺旋板载荷试验

python 求解代码如下&#xff1a; 1. import numpy as np 2. 3. # 已知参数 4. p_a 100 # 标准压力&#xff0c; kPa 5. p np.array([25, 50, 100, 200) # 荷载&#xff0c; kPa 6. s np.array([2.88, 5.28, 9.50, 15.00) / 10 # 沉降量&#xff0c; cm 7. D 10 # 螺旋板直…...

低代码开发ERP:精打细算,聚焦核心投入

企业数字化转型已经成为现代商业环境中的一项关键任务。如今&#xff0c;企业面临着日益激烈的竞争和不断变化的市场需求。在这样的背景下&#xff0c;数字化转型不仅是企业生存的必然选择&#xff0c;也是取得竞争优势和实现可持续发展的关键因素。 在数字化转型的过程中&…...

顺序表(数据结构)

“路虽远&#xff0c;行则将至” ❤️主页&#xff1a;小赛毛 顺序表目录 1.线性表 2.顺序表 概念及结构 静态顺序表&#xff1a;使用定长数组存储元素。 动态顺序表&#xff1a;使用动态开辟的数组存储。 接口实现 1.线性表 线性表 &#xff08; linear list &#xff09; 是…...

stable_diffusion_webui docker环境配置

1.新建docker环境 docker run -tid --name e_commerce_sd --net host --runtimenvidia nvidia/cuda:11.1-cudnn8-devel-cent os7-ssh /bin/bashdocker exec -ti e_commerce_sd /bin/bash echo expor…...

【Java】常见面试题:HTTP/HTTPS、Servlet、Cookie、Linux和JVM

文章目录 1. 抓包工具&#xff08;了解&#xff09;2. 【经典面试题】GET和POST的区别&#xff1a;3. URL中不是也有这个服务器主机的IP和端口吗&#xff0c;为啥还要搞个Host&#xff1f;4. 补充5. HTTP响应状态码6. 总结HTTPS工作过程&#xff08;经典面试题&#xff09;7. H…...

批量爬虫采集完成任务

批量爬虫采集是现代数据获取的重要手段&#xff0c;然而如何高效完成这项任务却是让许多程序员头疼的问题。本文将分享一些实际操作价值高的方法&#xff0c;帮助你提高批量爬虫采集的效率和专业度。 目标明确&#xff0c;任务合理划分&#xff1a; 在开始批量爬虫采集前&…...

intelij idea 2023 创建java web项目

1.点击New Project 2.创建项目名称为helloweb &#xff0c;jdk版本这里使用8&#xff0c;更高版本也不影响工程创建 点击create 3.新建的工程是空的&#xff0c;点击File-> Project Structure 4.点击Modules 5.点击加号&#xff0c;然后键盘输入web可以搜索到web模块&…...

【论文笔记】基于指令回译的语言模型自对齐-MetaAI

MetaAI最近发布的Humpback&#xff0c;论文链接&#xff1a;https://arxiv.org/abs/2308.06259 解决什么问题&#xff1f; 大量高质量的指令微调数据集的生成。 思路 在这项工作中&#xff0c;我们通过开发迭代自训练算法来利用大量未标记的数据来创建高质量的指令调优数据集…...

MySQL和MariaDB的版本对应关系

MariaDB 10.0和MariaDB 10.1可以作为MySQL 5.6的有限替代。 MariaDB 10.2可以作为MySQL 5.7的有限替代。 一&#xff0c;目前最新版本 MariaDB 10.5.8 10.4.17 10.3.27 10.2.36 MySQL 8.0.23 二&#xff0c;oracle MySQL版本和MariaDB版本对应表: MariaDB版本 …...

Python数据的输入与输出

编辑&#xff1a;2023-08-14 17:00 Python是一种高级编程语言&#xff0c;它支持多种输入输出方式&#xff0c;包括标准输入输出、文件输入输出等。本文将从以下几个方面详细阐述Python数据的输入与输出。 一、标准输入输出 Python中的标准输入和标准输出指的是控制台输入输…...

生成国密密钥对

在线生成国密密钥对 生成的密钥对要妥善保管&#xff0c;丢失是无法找回的。...

ASR(自动语音识别)任务中的LLM(大语言模型)

一、LLM大语言模型的特点 二、大语言模型在ASR任务中的应用 浅度融合 浅层融合指的是LLM本身并没有和音频信息进行直接计算。其仅对ASR模型输出的文本结果进行重打分或者质量评估。 深度融合 LLM与ASR模型进行深度结合&#xff0c;统一语音和文本的编码空间或者直接利用ASR…...

简单介绍一下centos上有什么工具可以优雅的管理开机启动项

在CentOS上&#xff0c;你可以使用以下工具来优雅地管理开机启动项&#xff1a; systemctl&#xff1a;systemctl 是 systemd 系统和服务管理器的主要命令。它提供了一种优雅的方式来管理启动项。你可以使用 systemctl 命令来启用、禁用、查看和管理系统服务。例如&#xff0c;…...

网络编程(Modbus进阶)

思维导图 Modbus RTU&#xff08;先学一点理论&#xff09; 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议&#xff0c;由 Modicon 公司&#xff08;现施耐德电气&#xff09;于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...

谷歌浏览器插件

项目中有时候会用到插件 sync-cookie-extension1.0.0&#xff1a;开发环境同步测试 cookie 至 localhost&#xff0c;便于本地请求服务携带 cookie 参考地址&#xff1a;https://juejin.cn/post/7139354571712757767 里面有源码下载下来&#xff0c;加在到扩展即可使用FeHelp…...

基于FPGA的PID算法学习———实现PID比例控制算法

基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容&#xff1a;参考网站&#xff1a; PID算法控制 PID即&#xff1a;Proportional&#xff08;比例&#xff09;、Integral&#xff08;积分&…...

【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密

在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...

抖音增长新引擎:品融电商,一站式全案代运营领跑者

抖音增长新引擎&#xff1a;品融电商&#xff0c;一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中&#xff0c;品牌如何破浪前行&#xff1f;自建团队成本高、效果难控&#xff1b;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...

2025盘古石杯决赛【手机取证】

前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来&#xff0c;实在找不到&#xff0c;希望有大佬教一下我。 还有就会议时间&#xff0c;我感觉不是图片时间&#xff0c;因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...

多模态图像修复系统:基于深度学习的图片修复实现

多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...

android13 app的触摸问题定位分析流程

一、知识点 一般来说,触摸问题都是app层面出问题,我们可以在ViewRootImpl.java添加log的方式定位;如果是touchableRegion的计算问题,就会相对比较麻烦了,需要通过adb shell dumpsys input > input.log指令,且通过打印堆栈的方式,逐步定位问题,并找到修改方案。 问题…...

[论文阅读]TrustRAG: Enhancing Robustness and Trustworthiness in RAG

TrustRAG: Enhancing Robustness and Trustworthiness in RAG [2501.00879] TrustRAG: Enhancing Robustness and Trustworthiness in Retrieval-Augmented Generation 代码&#xff1a;HuichiZhou/TrustRAG: Code for "TrustRAG: Enhancing Robustness and Trustworthin…...

Python 高级应用10:在python 大型项目中 FastAPI 和 Django 的相互配合

无论是python&#xff0c;或者java 的大型项目中&#xff0c;都会涉及到 自身平台微服务之间的相互调用&#xff0c;以及和第三发平台的 接口对接&#xff0c;那在python 中是怎么实现的呢&#xff1f; 在 Python Web 开发中&#xff0c;FastAPI 和 Django 是两个重要但定位不…...