当前位置: 首页 > news >正文

回归预测 | MATLAB实现SSA-BP麻雀搜索算法优化BP神经网络多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现SSA-BP麻雀搜索算法优化BP神经网络多输入单输出回归预测(多指标,多图)

目录

    • 回归预测 | MATLAB实现SSA-BP麻雀搜索算法优化BP神经网络多输入单输出回归预测(多指标,多图)
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

1
2
3

基本介绍

回归预测 | MATLAB实现SSA-BP麻雀搜索算法优化BP神经网络多输入单输出回归预测(多指标,多图),输入多个特征,输出单个变量,多输入单输出回归预测;
多指标评价,代码质量极高;excel数据,方便替换,运行环境2018及以上。

程序设计

  • 完整源码和数据获取方式:私信回复MATLAB实现SSA-BP麻雀搜索算法优化BP神经网络多输入单输出回归预测(多指标,多图)
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
res = xlsread('data.xlsx');%%  划分训练集和测试集
temp = randperm(103);P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test);%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%%  均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);%%  相关指标计算
% 决定系数 R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test -  T_sim2)^2 / norm(T_test -  mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])% 平均绝对误差 MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])% 平均相对误差 MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

相关文章:

回归预测 | MATLAB实现SSA-BP麻雀搜索算法优化BP神经网络多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现SSA-BP麻雀搜索算法优化BP神经网络多输入单输出回归预测(多指标,多图) 目录 回归预测 | MATLAB实现SSA-BP麻雀搜索算法优化BP神经网络多输入单输出回归预测(多指标,多图)效果一览基本…...

QT的mysql(数据库)最佳实践和常见问题解答

涉及到数据库,首先安利一个软件Navicat Premium,用来查询数据库很方便 QMysql驱动是Qt SQL模块使用的插件,用于与MySQL数据库进行通信。要编译QMysql驱动,您需要满足以下条件: 您需要安装MySQL的客户端库和开发头文件…...

使用PyMuPDF库的PDF合并和分拆程序

PDF工具应用程序是一个使用wxPython和PyMuPDF库编写的简单工具,用于合并和分拆PDF文件。它提供了一个用户友好的图形界面,允许用户选择源文件夹和目标文件夹,并对PDF文件进行操作。 C:\pythoncode\blog\pdfmergandsplit.py 功能特点 选择文…...

2023/8/18 - You need to rely on yourself to achieve the life you want

...

Data Abstract for .NET and Delphi Crack

Data Abstract for .NET and Delphi Crack .NET和Delphi的数据摘要是一套或RAD工具,用于在.NET、Delphi和Mono中编写多层解决方案。NET和Delphi的数据摘要是一个套件,包括RemObjects.NET和Delphi版本的数据摘要。RemObjects Data Abstract允许您创建访问…...

Eclipse集成MapStruct

Eclipse集成MapStruct 在Eclipse中添加MapStruct依赖配置Eclipse支持MapStruct①安装 m2e-aptEclipse Marketplace的方式安装Install new software的方式安装(JDK8用到) ②添加到pom.xml 今天拿到同事其他项目的源码,导入并运行的时候抛出了异…...

采用pycharm在虚拟环境使用pyinstaller打包python程序

一年多以前,我写过一篇博客描述了如何虚拟环境打包,这一次有所不同,直接用IDE pycharm构成虚拟环境并运行pyinstaller打包 之前的博文: 虚拟环境venu使用pyinstaller打包python程序_伊玛目的门徒的博客-CSDN博客 第一步&#xf…...

Rx.NET in Action 中文介绍 前言及序言

Rx 处理器目录 (Catalog of Rx operators) 目标可选方式Rx 处理器(Operator)创建 Observable Creating Observables直接创建 By explicit logicCreate Defer根据范围创建 By specificationRangeRepeatGenerateTimerInterval Return使用预设 Predefined primitivesThrow …...

Azure Blob存储使用

创建存储账户,性能选择标准即可,冗余选择本地冗余存储即可 容器选择类别选择专用即可 可以上传文件到blob中 打开文件可以看到文件的访问路径 4.编辑中可以修改文件 复制链接,尝试访问,可以看到没有办法访问,因为创建容器的时候选…...

mysql、redis面试题

mysql 相关 1、数据库优化查询方法 外键、索引、联合查询、选择特定字段等等2、简述mysql和redis区别 redis: 内存型非关系数据库,数据保存在内存中,速度快mysql:关系型数据库,数据保存在磁盘中,检索的话&…...

22、touchGFX学习Model-View-Presenter设计模式

touchGFX采用MVP架构,如下所示: 本文界面如下所示: 本文将实现两个操作: 1、触摸屏点击开关按键实现打印开关显示信息,模拟开关灯效果 2、板载案按键控制触摸屏LED灯的显示和隐藏 一、触摸屏点击开关按键实现打印开…...

Python Opencv实践 - 图像高斯滤波(高斯模糊)

import cv2 as cv import numpy as np import matplotlib.pyplot as pltimg cv.imread("../SampleImages/pomeranian.png", cv.IMREAD_COLOR) rows,cols,channels img.shape print(rows,cols,channels)#为图像添加高斯噪声 #使用np.random.normal(loc0.0, scale1.0…...

使用 Qt 生成 Word 和 PDF 文档的详细教程

系列文章目录 文章目录 系列文章目录前言一、安装 Qt二、生成 Word 文档三、生成 PDF 文档四、运行代码并查看结果五、自定义文档内容总结 前言 Qt 是一个跨平台的应用程序开发框架,除了用于创建图形界面应用程序外,还可以用来生成 Word 和 PDF 文档。本…...

ssm+vue校园美食交流系统源码

ssmvue校园美食交流系统源码和论文026 开发工具:idea 数据库mysql5.7 数据库链接工具:navcat,小海豚等 技术:ssm 摘 要 随着现在网络的快速发展,网上管理系统也逐渐快速发展起来,网上管理模式很快融入到了许多商…...

电力系统基础知识(一)—电力系统概述

1、电压 也称作电势差或电位差,是衡量单位电荷在静电场中由于电势不同所产生的能量差的物理量。其大小等于单位正电荷因受电场力作用从A点移动到B点所做的功,电压的方向规定为从高电位指向低电位。其单位为伏特(V,简称伏),常用单位还有千伏(kV)、毫伏(mV)、微伏(uV…...

spring(15) SpringBoot启动过程

目录 一、过程简介二、过程流程图三、源码分析1、运行 SpringApplication.run() 方法2、确定应用程序类型3、加载所有的初始化器4、加载所有的监听器5、设置程序运行的主类6、开启计时器7、将 java.awt.headless 设置为 true8、获取并启用监听器9、设置应用程序参数10、准备环境…...

耕地单目标语义分割实践——Pytorch网络过程实现理解

一、卷积操作 (一)普通卷积(Convolution) (二)空洞卷积(Atrous Convolution) 根据空洞卷积的定义,显然可以意识到空洞卷积可以提取到同一输入的不同尺度下的特征图&…...

画质提升+带宽优化,小红书音视频团队端云结合超分落地实践

随着视频业务和短视频播放规模不断增长,小红书一直致力于研究:如何在保证提升用户体验质量的同时降低视频带宽成本? 在近日结束的音视频技术大会「LiveVideoStackCon 2023」上海站中,小红书音视频架构视频图像处理算法负责人剑寒向…...

【傅里叶级数与傅里叶变换】数学推导——3、[Part4:傅里叶级数的复数形式] + [Part5:从傅里叶级数推导傅里叶变换] + 总结

文章内容来自DR_CAN关于傅里叶变换的视频,本篇文章提供了一些基础知识点,比如三角函数常用的导数、三角函数换算公式等。 文章全部链接: 基础知识点 Part1:三角函数系的正交性 Part2:T2π的周期函数的傅里叶级数展开 P…...

第二章MyBatis入门程序

入门程序 创建maven程序 导入MyBatis依赖。pom.xml下导入如下依赖 <dependencies><dependency><groupId>org.mybatis</groupId><artifactId>mybatis</artifactId><version>3.5.6</version></dependency><dependen…...

web vue 项目 Docker化部署

Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段&#xff1a; 构建阶段&#xff08;Build Stage&#xff09;&#xff1a…...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?

论文网址&#xff1a;pdf 英文是纯手打的&#xff01;论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误&#xff0c;若有发现欢迎评论指正&#xff01;文章偏向于笔记&#xff0c;谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...

select、poll、epoll 与 Reactor 模式

在高并发网络编程领域&#xff0c;高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表&#xff0c;以及基于它们实现的 Reactor 模式&#xff0c;为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。​ 一、I…...

安宝特案例丨Vuzix AR智能眼镜集成专业软件,助力卢森堡医院药房转型,赢得辉瑞创新奖

在Vuzix M400 AR智能眼镜的助力下&#xff0c;卢森堡罗伯特舒曼医院&#xff08;the Robert Schuman Hospitals, HRS&#xff09;凭借在无菌制剂生产流程中引入增强现实技术&#xff08;AR&#xff09;创新项目&#xff0c;荣获了2024年6月7日由卢森堡医院药剂师协会&#xff0…...

基于IDIG-GAN的小样本电机轴承故障诊断

目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) ​梯度归一化(Gradient Normalization)​​ (2) ​判别器梯度间隙正则化(Discriminator Gradient Gap Regularization)​​ (3) ​自注意力机制(Self-Attention)​​ 3. 完整损失函数 二…...

STM32---外部32.768K晶振(LSE)无法起振问题

晶振是否起振主要就检查两个1、晶振与MCU是否兼容&#xff1b;2、晶振的负载电容是否匹配 目录 一、判断晶振与MCU是否兼容 二、判断负载电容是否匹配 1. 晶振负载电容&#xff08;CL&#xff09;与匹配电容&#xff08;CL1、CL2&#xff09;的关系 2. 如何选择 CL1 和 CL…...

LangFlow技术架构分析

&#x1f527; LangFlow 的可视化技术栈 前端节点编辑器 底层框架&#xff1a;基于 &#xff08;一个现代化的 React 节点绘图库&#xff09; 功能&#xff1a; 拖拽式构建 LangGraph 状态机 实时连线定义节点依赖关系 可视化调试循环和分支逻辑 与 LangGraph 的深…...

mac:大模型系列测试

0 MAC 前几天经过学生优惠以及国补17K入手了mac studio,然后这两天亲自测试其模型行运用能力如何&#xff0c;是否支持微调、推理速度等能力。下面进入正文。 1 mac 与 unsloth 按照下面的进行安装以及测试&#xff0c;是可以跑通文章里面的代码。训练速度也是很快的。 注意…...

基于鸿蒙(HarmonyOS5)的打车小程序

1. 开发环境准备 安装DevEco Studio (鸿蒙官方IDE)配置HarmonyOS SDK申请开发者账号和必要的API密钥 2. 项目结构设计 ├── entry │ ├── src │ │ ├── main │ │ │ ├── ets │ │ │ │ ├── pages │ │ │ │ │ ├── H…...

VisualXML全新升级 | 新增数据库编辑功能

VisualXML是一个功能强大的网络总线设计工具&#xff0c;专注于简化汽车电子系统中复杂的网络数据设计操作。它支持多种主流总线网络格式的数据编辑&#xff08;如DBC、LDF、ARXML、HEX等&#xff09;&#xff0c;并能够基于Excel表格的方式生成和转换多种数据库文件。由此&…...