NLP | 论文摘要文本分类
基于论文摘要的文本分类与关键词抽取挑战赛
2023 iFLYTEK A.I.开发者大赛-讯飞开放平台
环境需求:Anaconda-JupyterNotebook,或者百度AIStudio
赛题解析:
【文本二分类任务】根据论文摘要等信息理解,将论文划分为0-1两类别之一。
【文本关键词识别任务】从给定的论文中识别和提取出与论文内容相关的关键词。
数据样例:title、author、Abstract、Keywords、[label] 0-1
一键运行的时候先把csv删了(是运行结果)
安装nltk【更换镜像源避免安装出错】
!pip install nltk -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com
# 导入pandas用于读取表格数据
import pandas as pd# 导入BOW(词袋模型)
from sklearn.feature_extraction.text import CountVectorizer
#可以替换为TfidfVectorizer(TF-IDF(词频-逆文档频率))
#注意上下文要同时修改,亲测后者效果更佳# 导入LogisticRegression回归模型
from sklearn.linear_model import LogisticRegression# 过滤警告消息
from warnings import simplefilter
from sklearn.exceptions import ConvergenceWarning
simplefilter("ignore", category=ConvergenceWarning)# 读取数据集
train = pd.read_csv('/home/aistudio/data/data231041/train.csv')
train['title'] = train['title'].fillna('')
train['abstract'] = train['abstract'].fillna('')test = pd.read_csv('/home/aistudio/data/data231041/testB.csv')
test['title'] = test['title'].fillna('')
test['abstract'] = test['abstract'].fillna('')# 提取文本特征,生成训练集与测试集
train['text'] = train['title'].fillna('') + ' ' + train['author'].fillna('') + ' ' + train['abstract'].fillna('')+ ' ' + train['Keywords'].fillna('')
test['text'] = test['title'].fillna('') + ' ' + test['author'].fillna('') + ' ' + test['abstract'].fillna('')vector = CountVectorizer().fit(train['text'])
train_vector = vector.transform(train['text'])
test_vector = vector.transform(test['text'])# 引入模型
model = LogisticRegression()# 开始训练,这里可以考虑修改默认的batch_size与epoch来取得更好的效果
model.fit(train_vector, train['label'])# 利用模型对测试集label标签进行预测
test['label'] = model.predict(test_vector)
test['Keywords'] = test['title'].fillna('')
test[['uuid','Keywords','label']].to_csv('submit_task1.csv', index=None)
ndarray.finall()方法:填充空值
pandas数据处理常用命令_ndarray fillna_hellosc01的博客-CSDN博客
Basedline的方法:BOW词袋提取特征-LR逻辑回归-进行预测
改进方法:TF-IDF,SVM,epoches
# TfidfVectorizer(TF-IDF(词频-逆文档频率))
from sklearn.feature_extraction.text import TfidfVectorizer
# 导入支持向量机分类器
from sklearn.svm import SVC#创建SVM训练模型
model = SVC(kernel='linear', C=1)# 利用模型对测试集label标签进行预测
test['label'] = model.predict(test_vector)
test['Keywords'] = test['title'].fillna('')
test[['uuid','Keywords','label']].to_csv('submit_task2.csv', index=None)
by ライト
相关文章:
NLP | 论文摘要文本分类
基于论文摘要的文本分类与关键词抽取挑战赛2023 iFLYTEK A.I.开发者大赛-讯飞开放平台 环境需求:Anaconda-JupyterNotebook,或者百度AIStudio 赛题解析: 【文本二分类任务】根据论文摘要等信息理解,将论文划分为0-1两…...
Linux / Ubuntu磁盘扩容
测试时遇到了shell脚本执行错误的问题,找到脚本编写的楼哥,才发现自己给虚拟机的磁盘已经满了,没想到啊,业务的解压操作,这么费磁盘,那就需要进行磁盘的扩展,记录一下 1、首先停掉虚拟机&#…...
【ChatGPT 指令大全】怎么使用ChatGPT来辅助知识学习
目录 概念解说 简易教学 深度教学 教学与测验 解释一个主题的背后原理 总结 在当今信息时代,互联网的快速发展为我们获取知识提供了前所未有的便利。而其中,人工智能技术的应用也为我们的学习和交流带来了新的可能性。作为一种基于自然语言处理的人…...
URL编码指南
URL简介 URL 是统一资源定位符(Uniform Resource Locator)的缩写。它是用于在互联网上定位并访问资源的一种标识方式。 URL通常由以下几个组成部分组成: 协议(Protocol):指示要使用的协议,如…...
Java mail邮件开发 OA办公系统
目录 1 Java mail邮件开发 OA办公系统 1.1 ExitServlet 1.1.1 //退出系统 1.2 LoginAction 1.2.1 //登录Action Java mail邮件开发 OA办公系统 ExitServlet package com.email.ser...
ElasticSearch的客户端操作
ElasticSearch的客户端操作 1、客户端介绍 官方文档地址: https://www.elastic.co/guide/en/elasticsearch/reference/current/index.html 实际开发中,有多种方式操作Elasticsearch: 客户端工具:发送http请求(RESTful风格)操作…...
如何快速的合并多个PPT使之成为一个PPT?
如何快速的合并多个PPT使之成为一个PPT? 项目过程中,经常给客户汇报,经常做PPT,有时候,需要把之前的ppt内容整合到新的内容中,如何快速合并以及使用呢? 幻灯片(PPT中)点…...
【微信小程序】列表滚动触底更新实现
微信小程序开发系列 目录 前言一、上拉触底事件函数onReachBottom二、实现 前言 在微信小程序开发中经常遇到分页列表需要滚动到底部之后进行请求数据更新,下面介绍如何进行触底更新分页展示。使用到页面上拉触底事件的处理函数onReachBottom。 一、上拉触底事件函…...
2023全国大学生数学建模竞赛A题B题C题D题E题思路+模型+代码+论文
目录 一. 2023国赛数学建模思路: 赛题发布后会第一时间发布选题建议,思路,模型代码等 详细思路获取见文末名片,9.7号第一时间更新 二.国赛常用的模型算法: 三、算法简介 四.超重要!!&…...
Git常见操作
一、全局配置命令 配置级别: –local(默认,高级优先):只影响本地仓库 –global(中优先级):只影响所有当前用户的git仓库 –system(低优先级):影响到全系统的git仓库 1…...
thinkphp6前后端验证码分离以及验证
1.验证码接口生成验证码: public function verify(){return captcha(); } 也可以自己写方法 2.验证方法和普通模式session验证有区别,需要改原文件: 修改后的代码: <?php // +---------------------------------------------------------------------- // | ThinkP…...
jenkinsfile自动部署接口
复制创建新流水线 从预先创建的job中获取 config.xml 或根据需要创建另一个 curl -X GET http://xxx.xxx.xxxx.com/job/backup-data/config.xml -u test:xxxxxxxxxxxxxxxxxx-o config.xml 生成Crumb CRUMB$(curl -s http://xxxxxxx.xxx.xxx.com/crumbIssuer/api/xml?xpathc…...
26. 删除有序数组中的重复项
26. 删除有序数组中的重复项 给你一个 升序排列 的数组 nums ,请你 原地 删除重复出现的元素,使每个元素 只出现一次 ,返回删除后数组的新长度。元素的 相对顺序 应该保持 一致 。然后返回 nums 中唯一元素的个数。 考虑 nums 的唯一元素的…...
vue父页面获取子组件绑定值
<el-form-item label"图文详情" prop"imageText"><div><el-button type"primary" link>组件</el-button><WangEditor v-model"ruleForm.imageText"></WangEditor></div> </el-form-item…...
FPGA_学习_17_IP核_ROM(无延迟-立即输出)
由于项目中关于厂商提供的温度-偏压曲线数据已经被同事放在ROM表了,我这边可用直接调用。 今天在仿真的时候,发现他的ROM表用的IP核是及时输出的,就是你地址给进去,对应地址的ROM数据就立马输出,没有延迟。 我打开他的…...
CentOS7.6安装mysql8.0.34
一、查看服务器相关信息 cat /etc/redhat-release cat /proc/version [rootlocalhost ~]# cat /etc/redhat-release CentOS Linux release 7.6.1810 (Core) [rootlocalhost ~]# cat /proc/version Linux version 3.10.0-957.el7.x86_64 (mockbuildkbuilder.bsys.centos.org) …...
SCF金融公链新加坡启动会 链结创新驱动未来
新加坡迎来一场引人瞩目的金融科技盛会,SCF金融公链启动会于2023年8月13日盛大举行。这一受瞩目的活动将为金融科技领域注入新的活力,并为广大投资者、合作伙伴以及关注区块链发展的人士提供一个难得的交流平台。 在SCF金融公链启动会上, Wil…...
JavaScript【实例、静态方法与属性、原型链、instanceof 运算符、Object 对象的相关方法、对象的继承、多重继承、严格模式】(十九)
目录 实例、静态方法与属性 实例方法和静态方法...
【Git】本地搭建Gitee、Github环境
本地 (Local) 1、使用命令生成公钥(pub文件) 1. $ ssh-keygen -t rsa -C "xxxxxxxemail.com" -f "github_id_rsa" 2. $ ssh-keygen -t rsa -C "xxxxxxxemail.com" -f "gitee_id_rsa" …...
学习ts(四)联合类型、交叉类型、类型断言
联合类型 使用联合类型定义属性和方法,只要符合其中一种即可 let myPhone: string | number 010-7788 // let myPhone1: string | number true 因为没有包含boolean值 会报错const fn (something: number | boolean): boolean > {return !!something }con…...
7.4.分块查找
一.分块查找的算法思想: 1.实例: 以上述图片的顺序表为例, 该顺序表的数据元素从整体来看是乱序的,但如果把这些数据元素分成一块一块的小区间, 第一个区间[0,1]索引上的数据元素都是小于等于10的, 第二…...
3.3.1_1 检错编码(奇偶校验码)
从这节课开始,我们会探讨数据链路层的差错控制功能,差错控制功能的主要目标是要发现并且解决一个帧内部的位错误,我们需要使用特殊的编码技术去发现帧内部的位错误,当我们发现位错误之后,通常来说有两种解决方案。第一…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...
GitHub 趋势日报 (2025年06月06日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 590 cognee 551 onlook 399 project-based-learning 348 build-your-own-x 320 ne…...
免费数学几何作图web平台
光锐软件免费数学工具,maths,数学制图,数学作图,几何作图,几何,AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...
Vite中定义@软链接
在webpack中可以直接通过符号表示src路径,但是vite中默认不可以。 如何实现: vite中提供了resolve.alias:通过别名在指向一个具体的路径 在vite.config.js中 import { join } from pathexport default defineConfig({plugins: [vue()],//…...
关于uniapp展示PDF的解决方案
在 UniApp 的 H5 环境中使用 pdf-vue3 组件可以实现完整的 PDF 预览功能。以下是详细实现步骤和注意事项: 一、安装依赖 安装 pdf-vue3 和 PDF.js 核心库: npm install pdf-vue3 pdfjs-dist二、基本使用示例 <template><view class"con…...
离线语音识别方案分析
随着人工智能技术的不断发展,语音识别技术也得到了广泛的应用,从智能家居到车载系统,语音识别正在改变我们与设备的交互方式。尤其是离线语音识别,由于其在没有网络连接的情况下仍然能提供稳定、准确的语音处理能力,广…...
Elastic 获得 AWS 教育 ISV 合作伙伴资质,进一步增强教育解决方案产品组合
作者:来自 Elastic Udayasimha Theepireddy (Uday), Brian Bergholm, Marianna Jonsdottir 通过搜索 AI 和云创新推动教育领域的数字化转型。 我们非常高兴地宣布,Elastic 已获得 AWS 教育 ISV 合作伙伴资质。这一重要认证表明,Elastic 作为 …...
