【李沐】3.3线性回归的简洁实现
1、生成数据集
import numpy as np
import torch
from torch.utils import data
from d2l import torch as d2l
true_w = torch.tensor([2, -3.4]) # 定义真实权重 true_w,其中 [2, -3.4] 表示两个特征的权重值
true_b = 4.2 # 定义真实偏差 true_b,表示模型的截距项# 调用 synthetic_data 函数生成合成数据集,传入真实权重 true_w、偏差 true_b 和样本数量 1000
# 这将返回特征矩阵 features 和目标值 labels,用于训练和测试模型
features, labels = d2l.synthetic_data(true_w, true_b, 1000)
2、读取数据集
def load_array(data_arrays, batch_size, is_train=True): # 定义函数 load_array,接受数据数组、批量大小和是否训练标志 is_train 作为参数"""构造一个 PyTorch 数据迭代器"""dataset = data.TensorDataset(*data_arrays) # 创建一个 PyTorch 数据集,使用给定的数据数组# 使用 data.DataLoader 构造数据迭代器,传入数据集、批量大小和是否训练标志# 当 is_train 为 True 时,数据会被随机打乱,用于训练;否则,数据不会被打乱,用于测试或验证return data.DataLoader(dataset, batch_size, shuffle=is_train)
batch_size = 10
data_iter = load_array((features, labels), batch_size)
batch_size = 10
data_iter = load_array((features, labels), batch_size)
3、定义模型
线性层输入2,输出1
# nn是神经⽹络的缩写
from torch import nn
net = nn.Sequential(nn.Linear(2, 1))
4、初始化模型
通过net[0]选择⽹络中的第⼀个图层,然后使⽤weight.data和bias.data⽅法访问参数。我们还可以使⽤替换⽅法normal_和fill_来重写参数值。
0,0.0.01的意思是均值为0、标准差为0.01的正态分布中随机采样
net[0].weight.data.normal_(0, 0.01)
net[0].bias.data.fill_(0)
5、定义损失函数
均方误差,L2范数
loss = nn.MSELoss()
6、定义优化函数
net.parameters() 返回神经网络模型中需要被优化的参数列表
trainer = torch.optim.SGD(net.parameters(), lr=0.03)
7、训练
主要是注意里面的写法,看到的别的代码知道啥意思就可以
num_epochs = 3 # 定义训练轮次数量为 3for epoch in range(num_epochs): # 迭代每个训练轮次for X, y in data_iter: # 遍历数据迭代器中的每个数据批次l = loss(net(X), y) # 计算模型预测值与真实标签之间的损失trainer.zero_grad() # 清零梯度,以便进行下一轮的梯度计算l.backward() # 对损失进行反向传播,计算参数的梯度trainer.step() # 使用优化器更新模型参数l = loss(net(features), labels) # 在整个训练集上计算损失print(f'epoch {epoch + 1}, loss {l:f}') # 打印当前训练轮次和损失值
相关文章:

【李沐】3.3线性回归的简洁实现
1、生成数据集 import numpy as np import torch from torch.utils import data from d2l import torch as d2l true_w torch.tensor([2, -3.4]) # 定义真实权重 true_w,其中 [2, -3.4] 表示两个特征的权重值 true_b 4.2 # 定义真实偏差 true_b,表示…...

Ghost-free High Dynamic Range Imaging withContext-aware Transformer
Abstract 高动态范围(HDR)去鬼算法旨在生成具有真实感细节的无鬼HDR图像。 受感受野局部性的限制,现有的基于CNN的方法在大运动和严重饱和度的情况下容易产生重影伪影和强度畸变。 本文提出了一种新的上下文感知视觉转换器(CA-VIT)用于高动态…...

过来,我告诉你个秘密:送给程序员男友最好的礼物,快教你对象学习磁盘分区啦!小点声哈,别让其他人学会了!
[原文连接:来自给点知识](过来,我告诉你个秘密:送给程序员男友最好的礼物,快教你对象学习磁盘分区啦!小点声哈,别让其他人学会了!) 再唱不出那样的歌曲 听到都会红着脸躲避 虽然会经常忘了我依然爱着你 …...

Cadence+硬件每日学习十个知识点(38)23.8.18 (Cadence的使用,界面介绍)
文章目录 1.Cadence有共享数据库的途径2.Cadence启动3.Cadence界面菜单简介(file、edit、view、place、options)4.Cadence界面的图标简介5.我的下载资源有三本书 1.Cadence有共享数据库的途径 答: AD缺少共享数据库的途径,目前我…...

React Native Expo项目,复制文本到剪切板
装包: npx expo install expo-clipboard import * as Clipboard from expo-clipboardconst handleCopy async (text) > {await Clipboard.setStringAsync(text)Toast.show(复制成功, {duration: 3000,position: Toast.positions.CENTER,})} 参考链接:…...

React源码解析18(5)------ 实现函数组件【修改beginWork和completeWork】
摘要 经过之前的几篇文章,我们实现了基本的jsx,在页面渲染的过程。但是如果是通过函数组件写出来的组件,还是不能渲染到页面上的。 所以这一篇,主要是对之前写得方法进行修改,从而能够显示函数组件,所以现…...

vscode ssh 远程 gdb 调试
一、点运行与调试,生成launch.json 文件 二、点添加配置,选择GDB 三、修改启动程序路径...

云原生 AI 工程化实践之 FasterTransformer 加速 LLM 推理
作者:颜廷帅(瀚廷) 01 背景 OpenAI 在 3 月 15 日发布了备受瞩目的 GPT4,它在司法考试和程序编程领域的惊人表现让大家对大语言模型的热情达到了顶点。人们纷纷议论我们是否已经跨入通用人工智能的时代。与此同时,基…...

PHP酒店点菜管理系统mysql数据库web结构apache计算机软件工程网页wamp
一、源码特点 PHP 酒店点菜管理系统是一套完善的web设计系统,对理解php编程开发语言有帮助,系统具有完整的源代码和数据库,系统主要采用B/S模式开发。 代码下载 https://download.csdn.net/download/qq_41221322/88232051 论文 https://…...

【面试复盘】知乎暑期实习算法工程师二面
来源:投稿 作者:LSC 编辑:学姐 1. 自我介绍 2. 介绍自己的项目 3. 编程题 判断一个链表是不是会文链表class ListNode: def __init__(self, val, nextNone):self.val valself.next nextdef reverse(head):pre Nonep headwhile p ! No…...

内网穿透和服务器+IP 实现公网访问内网的区别
内网穿透和服务器IP 实现公网访问内网的区别在于实现方式和使用场景。 内网穿透(Port Forwarding):内网穿透是一种通过网络技术将公网用户的请求通过中转服务器传输到内网设备的方法。通过在路由器或防火墙上进行配置,将公网请求…...

JAVA权限管理 助力企业精细化运营
在企业的日常经营中,企业人数达到一定数量之后,就需要对企业的层级和部门进行细分,建立企业的树形组织架构。围绕着树形组织架构,企业能够将权限落实到个人,避免企业内部出现管理混乱等情况。权限管理是每个企业管理中…...

金融语言模型:FinGPT
项目简介 FinGPT是一个开源的金融语言模型(LLMs),由FinNLP项目提供。这个项目让对金融领域的自然语言处理(NLP)感兴趣的人们有了一个可以自由尝试的平台,并提供了一个与专有模型相比更容易获取的金融数据。…...

LeetCode--HOT100题(30)
目录 题目描述:24. 两两交换链表中的节点(中等)题目接口解题思路代码 PS: 题目描述:24. 两两交换链表中的节点(中等) 给你一个链表,两两交换其中相邻的节点,并返回交换后链表的头节…...

Springboot 实践(3)配置DataSource及创建数据库
前文讲述了利用MyEclipse2019开发工具,创建maven工程、加载springboot、swagger-ui功能。本文讲述创建数据库,为项目配置数据源,实现数据的增删改查服务,并通过swagger-ui界面举例调试服务控制器 创建数据库 项目使用MySQL 8.0.…...

【问题整理】Ubuntu 执行 apt-get install xxx 报错
Ubuntu 执行 apt-get install xxx 报错 一、问题描述: 执行apt-get install fcitx时,报如下错误 grub-pc E: Sub-process /usr/bin/dpkg returned an error code (1)二、解决方法: 尝试修复依赖问题: sudo apt-get -f install这个命令会尝试修复系统…...

Java课题笔记~ SpringBoot简介
1. 入门案例 问题导入 SpringMVC的HelloWord程序大家还记得吗? SpringBoot是由Pivotal团队提供的全新框架,其设计目的是用来简化Spring应用的初始搭建以及开发过程 原生开发SpringMVC程序过程 1.1 入门案例开发步骤 ①:创建新模块&#…...

一种基于springboot、redis的分布式任务引擎的实现(一)
总体思路是,主节点接收到任务请求,将根据任务情况拆分成多个任务块,将任务块标识的主键放入redis。发送redis消息,等待其他节点运行完毕,结束处理。接收到信息的节点注册本节点信息到redis、开启多线程、获取任务块、执…...

基于IDE Eval Resetter延长IntelliJ IDEA等软件试用期的方法(包含新版本软件的操作方法)
本文介绍基于IDE Eval Resetter插件,对集成开发环境IntelliJ IDEA等JetBrains公司下属的多个开发软件,加以试用期延长的方法。 我们这里就以IntelliJ IDEA为例,来介绍这一插件发挥作用的具体方式。不过,需要说明使用IDE Eval Rese…...

RocketMQ消费者可以手动消费但无法主动消费问题,或生成者发送超时
1.大多数是配置问题 修改rocketmq文件夹broker.conf 2.配置与集群IP或本地IPV4一样 重启 在RocketMQ独享实例中支持IPv4和IPv6双栈,主要是通过在网络层面上同时支持IPv4和IPv6协议栈来实现的。RocketMQ的Broker端、Namesrv端和客户端都需要支持IPv4和IPv6协议&…...

【数据库系统】--【2】DBMS架构
DBMS架构 01DBMS架构概述02 DBMS的物理架构03 DBMS的运行和数据架构DBMS的运行架构DBMS的数据架构PostgreSQL的体系结构RMDB的运行架构 04DBMS的逻辑和开发架构DBMS的层次结构DBMS的开发架构DBMS的代码架构 05小结 01DBMS架构概述 02 DBMS的物理架构 数据库系统的体系结构 数据…...

第三章 图论 No.13拓扑排序
文章目录 裸题:1191. 家谱树差分约束拓扑排序:1192. 奖金集合拓扑序:164. 可达性统计差分约束拓扑序:456. 车站分级 拓扑序和DAG有向无环图联系在一起,通常用于最短/长路的线性求解 裸题:1191. 家谱树 119…...

喜报 | 擎创再度入围IDC中国FinTech 50榜单
8月16日,2023年度“IDC中国FinTech 50”榜单正式揭晓,擎创科技继2022年入选该榜单后,再次以创新者姿态成功入选,并以技术赋能业务创新,成为中国金融科技领域创新与活力的重要贡献者。 “IDC中国FinTech 50”旨在评选出…...

【C++ 记忆站】引用
文章目录 一、引用概念二、引用特性1、引用在定义时必须初始化2、一个变量可以有多个引用3、引用一旦引用一个实体,再不能引用其他实体 三、常引用四、使用场景1、做参数1、输出型参数2、大对象传参 2、做返回值1、传值返回2、传引用返回 五、传值、传引用效率比较六…...

Hlang--用Python写个编程语言-变量的实现
文章目录 前言语法规则表示次幂实现变量实现优先级实现步骤解析关键字语法解析解释器总结前言 先前的话,我们终于是把我们整个架子搭起来了,这里重复一下我们的流程,那就是,首先,我们通过解析文本,然后呢遍历文本当中的我们定义的合法关键字,然后呢,把他们封装为一个T…...

多维时序 | MATLAB实现PSO-CNN-BiLSTM多变量时间序列预测
多维时序 | MATLAB实现PSO-CNN-BiLSTM多变量时间序列预测 目录 多维时序 | MATLAB实现PSO-CNN-BiLSTM多变量时间序列预测基本介绍模型特点程序设计参考资料 基本介绍 本次运行测试环境MATLAB2021b,MATLAB实现PSO-CNN-BiLSTM多变量时间序列预测。代码说明:…...

实现Java异步调用的高效方法
文章目录 为什么需要异步调用?Java中的异步编程方式1. 使用多线程2. 使用Java异步框架 异步调用的关键细节结论 🎉欢迎来到Java学习路线专栏~实现Java异步调用的高效方法 ☆* o(≧▽≦)o *☆嗨~我是IT陈寒🍹✨博客主页:IT陈寒的博…...

批量提取文件名到excel,详细的提取步骤
如何批量提取文件名到excel?我们的电脑中可能存储着数量非常多的电子文件,现在需要快速将这些文件的名称全部提取到Excel中。虽然少量数据可以通过复制粘贴的方式轻松完成,但是对于上万个数据而言,复制粘贴都是行不通的࿰…...

C#中的泛型约束可以用在以下几个地方?
1.泛型类型参数: 在定义泛型类型或泛型方法时,可以使用泛型约束来限制泛型类型参数的类型。这可以确保类型参数满足特定的条件,从而在编译时捕获错误并提供更安全和可靠的代码。 public class MyClass<T> where T : IComparable<T&…...

Linux Vm上部署Docker
创建ubutu虚拟机并远程连接, 参考 https://blog.csdn.net/m0_48468018/article/details/132267096 在终端中切换到root用户,并安装docker服务 2.1 切换到root用户 sudo su2.2 安装docker服务 , 参考 https://docs.docker.com/engine/install/ubuntu/ …...