当前位置: 首页 > news >正文

open cv学习 (十)图形检测

图形检测

demo1
# 绘制几何图像的轮廓
import cv2img = cv2.imread("./shape1.png")gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 将图像二值化
t, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)# 检测图像中的所有轮廓
contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)cv2.drawContours(img, contours, 3, (0, 0, 255), 5)
cv2.imshow("img", img)
cv2.waitKey()
cv2.destroyAllWindows()
demo2
# 绘制花朵的轮廓
import cv2img = cv2.imread("flower.png")cv2.imshow("img", img)
img = cv2.medianBlur(img, 5)gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
t, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)cv2.imshow("binary", binary)contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
cv2.drawContours(img, contours, -1, (0, 0, 255), 2)
cv2.imshow("contours", img)
cv2.waitKey()
cv2.destroyAllWindows()
demo3
import cv2
# 矩形包围框img = cv2.imread("./shape2.png")
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
t, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
# 获取第一个轮廓的最小矩形边框
x, y, w, h = cv2.boundingRect(contours[0])
cv2.rectangle(img, (x, y), (x + w, y + h), (0, 0, 255), 2)
cv2.imshow("img", img)
cv2.waitKey()
cv2.destroyAllWindows()
demo4
import cv2
# 圆形包围框
img = cv2.imread("./shape2.png")
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
t, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
# 获取第一个轮廓的最小矩形边框
center, radius = cv2.minEnclosingCircle(contours[0])
x = int(round(center[0]))
y = int(round(center[1]))
cv2.circle(img, (x, y), int(radius), (0, 0, 255), 2)
cv2.imshow("img", img)
cv2.waitKey()
cv2.destroyAllWindows()
demo5
import cv2
# 凸包
img = cv2.imread("./shape2.png")
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
t, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
# 获取第一个轮廓的最小矩形边框
hull = cv2.convexHull(contours[0])
cv2.polylines(img, [hull], True, (0, 0, 255), 2)
cv2.imshow("img", img)
cv2.waitKey()
cv2.destroyAllWindows()
demo6
# Canny边缘检测
import cv2img = cv2.imread("flower.png")r1 = cv2.Canny(img, 10, 50)
r2 = cv2.Canny(img, 100, 200)
r3 = cv2.Canny(img, 400, 600)cv2.imshow("img", img)
cv2.imshow("r1", r1)
cv2.imshow("r2", r2)
cv2.imshow("r3", r3)
cv2.waitKey()
cv2.destroyAllWindows()
demo7
# 检测笔图像中出现的直线
import cv2
import numpy as npimg = cv2.imread("./pen.jpg")o = img.copy()o = cv2.medianBlur(o, 5)gray = cv2.cvtColor(o, cv2.COLOR_BGR2GRAY)binary = cv2.Canny(o, 50, 150)lines = cv2.HoughLinesP(binary, 1, np.pi/180, 15, minLineLength=100, maxLineGap=18)for line in lines:x1, y1, x2, y2 = line[0]cv2.line(img, (x1, y1), (x2, y2), (0, 0, 255), 2)cv2.imshow("canny", binary)
cv2.imshow("img", img)
cv2.waitKey()
cv2.destroyAllWindows()
demo8
# 圆环检测
import cv2
import numpy as npimg = cv2.imread("coin.jpg")o = img.copy()
o = cv2.medianBlur(o, 5)
gray = cv2.cvtColor(o, cv2.COLOR_BGR2GRAY)circles = cv2.HoughCircles(gray, cv2.HOUGH_GRADIENT, 1, 70, param1=100, param2=25, minRadius=10, maxRadius=50)
circles = np.uint(np.around(circles))
for c in circles[0]:x, y, r = ccv2.circle(img, (x, y), r, (0, 0, 255), 3)cv2.circle(img, (x, y), 2, (0, 0, 255), 3)cv2.imshow("img", img)
cv2.waitKey()
cv2.destroyAllWindows()

相关文章:

open cv学习 (十)图形检测

图形检测 demo1 # 绘制几何图像的轮廓 import cv2img cv2.imread("./shape1.png")gray cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 将图像二值化 t, binary cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)# 检测图像中的所有轮廓 contours, hierarchy cv2.f…...

【C语言】字符函数和字符串函数

目录 1.求字符串长度strlen 2.长度不受限制的字符串函数 字符串拷贝strcpy 字符串追加strcat 字符串比较strcmp 3.长度受限制的字符串函数介绍strncpy strncat ​编辑strncmp 4.字符串查找strstr 5.字符串分割strtok 6.错误信息报告 strerror perror 7.字符分类函…...

前馈神经网络正则化例子

直接看代码: import torch import numpy as np import random from IPython import display from matplotlib import pyplot as plt import torchvision import torchvision.transforms as transforms mnist_train torchvision.datasets.MNIST(root…...

spring的核心技术---bean的生命周期加案例分析详细易懂

目录 一.spring管理JavaBean的初始化过程(生命周期) Spring Bean的生命周期: 二.spring的JavaBean管理中单例模式及原型(多例)模式 2.1 . 默认为单例,但是可以配置多例 2.2.举例论证 2.2.1 默认单例 2.2…...

【Maven教程】(一)入门介绍篇:Maven基础概念与其他构建工具:理解构建过程与Maven的多重作用,以及与敏捷开发的关系 ~

Maven入门介绍篇 1️⃣ 基础概念1.1 构建1.2 maven对构建的支持1.3 Maven的其他作用 2️⃣ 其他构建工具2.1 IDE2.2 Make2.3 Ant2.4 Jenkins 3️⃣ Maven与敏捷开发🌾 总结 1️⃣ 基础概念 "Maven"可以翻译为 “知识的积累者” 或 “专家”。这个词源于波…...

今天,谷歌Chrome浏览器部署抗量子密码

谷歌已开始部署混合密钥封装机制(KEM),以保护在建立安全的 TLS 网络连接时共享对称加密机密。 8月10日,Chrome 浏览器安全技术项目经理Devon O’Brien解释说,从 8 月 15 日发布的 Chrome 浏览器 116 开始,谷…...

SUMO traci接口控制电动车前往充电站充电

首先需要创建带有停车位的充电站(停车场和充电站二合一),具体参考我的专栏中其他文章。如果在仿真的某个时刻,希望能够控制电动车前往指定的充电站充电,并且在完成充电后继续前往车辆原来的目的地,那么可以使用以下API&#xff1a…...

现代CSS中的换行布局技术

在现代网页设计中,为了适应不同屏幕尺寸和设备类型,换行布局是一项重要的技术。通过合适的布局技术,我们可以实现内容的自适应和优雅的排版。本文将介绍CSS中几种常见的换行布局技术,探索它们的属性、代码示例和解析,帮…...

简单理解Python中的深拷贝与浅拷贝

I. 简介 深拷贝会递归的创建一个完全独立的对象副本,包括所有嵌套的对象,而浅拷贝只复制嵌套对象的引用,不复制嵌套对象本身。 简单来说就是两者都对原对象进行了复制,因此使用is运算符来比较新旧对象时,返回的都是F…...

C++之std::pair<uint64_t, size_t>应用实例(一百七十七)

简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 人生格言: 人生…...

前端打开后端返回的HTML格式的数据

前端打开后端返回的 HTML格式 的数据: 后端返回的数据格式如下示例: 前端通过 js 方式处理(核心代码如下) console.log(回调, path); // path 是后端返回的 HTML 格式数据// 必须要存进localstorage,否则会报错&am…...

How to deal with document-oriented data

Schema designData models for e-commerceNuts and bolts of databases, collection, and documents. Principles of schema design What are your application access pattern?Whats the basic unit of data? the basic unit of data is the BSON documentWhat are the ca…...

Http 状态码汇总

文章目录 Http 状态码汇总1xx(信息性状态码)2xx(成功状态码)3xx(重定向状态码)4xx(客户端错误状态码)5xx(服务器错误状态码) Http 状态码汇总 1xx&#xff08…...

mysql自定义实体类框架

根据表结构自动生产实体类和方法,根据反射与io生成,可自定义扩展方法 package com.digital.web.front; /*** pom依赖* <dependency>* <groupId>mysql</groupId>* <artifactId>mysql-connector-java</artifactId>* <version>5.1.27</ve…...

批量将Excel中的第二列内容从拼音转换为汉字

要批量将Excel中的第二列内容从拼音转换为汉字&#xff0c;您可以使用Python的openpyxl库来实现。下面是一个示例代码&#xff0c;演示如何读取Excel文件并将第二列内容进行拼音转汉字&#xff1a; from openpyxl import load_workbook from xpinyin import Pinyin # 打开Exce…...

消息推送:精准推送,提升运营效果,增添平台活力

对于app开发者而言&#xff0c;没有什么途径比消息推送更能直接、即时地触及目标用户群体了。消息推送与我们的日常生活息息相关&#xff0c;各种APP的状态和通知都通过消息推送来告知用户&#xff0c;引起用户的注意&#xff0c;吸引用户点开app。总而言之&#xff0c;推送服务…...

[保研/考研机试] KY43 全排列 北京大学复试上机题 C++实现

题目链接&#xff1a; 全排列https://www.nowcoder.com/share/jump/437195121692001512368 描述 给定一个由不同的小写字母组成的字符串&#xff0c;输出这个字符串的所有全排列。 我们假设对于小写字母有a < b < ... < y < z&#xff0c;而且给定的字符串中的字…...

Java将时间戳转化为特定时区的日期字符串

先上代码&#xff1a; ZonedDateTime dateTime ZonedDateTime.ofInstant(Instant.ofEpochMilli(System.currentTimeMillis()),zone ); //2019-12-01T19:01:4608:00String formattedDate dateTime.format(DateTimeFormatter.ofPattern("yyyy-MM-dd") ); //2019-12-…...

【算法挨揍日记】day03——双指针算法_有效三角形的个数、和为s的两个数字

611. 有效三角形的个数 611. 有效三角形的个数https://leetcode.cn/problems/valid-triangle-number/ 题目描述&#xff1a; 给定一个包含非负整数的数组 nums &#xff0c;返回其中可以组成三角形三条边的三元组个数。 解题思路&#xff1a; 本题是一个关于三角形是否能成立…...

通过 kk 创建 k8s 集群和 kubesphere

官方文档&#xff1a;多节点安装 确保从正确的区域下载 KubeKey export KKZONEcn下载 KubeKey curl -sfL https://get-kk.kubesphere.io | VERSIONv3.0.7 sh -为 kk 添加可执行权限&#xff1a; chmod x kk创建 config 文件 KubeSphere 版本&#xff1a;v3.3 支持的 Kuber…...

Ubuntu系统下交叉编译openssl

一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机&#xff1a;Ubuntu 20.04.6 LTSHost&#xff1a;ARM32位交叉编译器&#xff1a;arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...

Java 语言特性(面试系列1)

一、面向对象编程 1. 封装&#xff08;Encapsulation&#xff09; 定义&#xff1a;将数据&#xff08;属性&#xff09;和操作数据的方法绑定在一起&#xff0c;通过访问控制符&#xff08;private、protected、public&#xff09;隐藏内部实现细节。示例&#xff1a; public …...

STM32+rt-thread判断是否联网

一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天&#xff0c;Spring AI 作为 Spring 生态系统的新生力量&#xff0c;正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务&#xff08;如 OpenAI、Anthropic&#xff09;的无缝对接&…...

QT: `long long` 类型转换为 `QString` 2025.6.5

在 Qt 中&#xff0c;将 long long 类型转换为 QString 可以通过以下两种常用方法实现&#xff1a; 方法 1&#xff1a;使用 QString::number() 直接调用 QString 的静态方法 number()&#xff0c;将数值转换为字符串&#xff1a; long long value 1234567890123456789LL; …...

LangChain知识库管理后端接口:数据库操作详解—— 构建本地知识库系统的基础《二》

这段 Python 代码是一个完整的 知识库数据库操作模块&#xff0c;用于对本地知识库系统中的知识库进行增删改查&#xff08;CRUD&#xff09;操作。它基于 SQLAlchemy ORM 框架 和一个自定义的装饰器 with_session 实现数据库会话管理。 &#x1f4d8; 一、整体功能概述 该模块…...

基于IDIG-GAN的小样本电机轴承故障诊断

目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) ​梯度归一化(Gradient Normalization)​​ (2) ​判别器梯度间隙正则化(Discriminator Gradient Gap Regularization)​​ (3) ​自注意力机制(Self-Attention)​​ 3. 完整损失函数 二…...

push [特殊字符] present

push &#x1f19a; present 前言present和dismiss特点代码演示 push和pop特点代码演示 前言 在 iOS 开发中&#xff0c;push 和 present 是两种不同的视图控制器切换方式&#xff0c;它们有着显著的区别。 present和dismiss 特点 在当前控制器上方新建视图层级需要手动调用…...

深入浅出Diffusion模型:从原理到实践的全方位教程

I. 引言&#xff1a;生成式AI的黎明 – Diffusion模型是什么&#xff1f; 近年来&#xff0c;生成式人工智能&#xff08;Generative AI&#xff09;领域取得了爆炸性的进展&#xff0c;模型能够根据简单的文本提示创作出逼真的图像、连贯的文本&#xff0c;乃至更多令人惊叹的…...

uni-app学习笔记三十五--扩展组件的安装和使用

由于内置组件不能满足日常开发需要&#xff0c;uniapp官方也提供了众多的扩展组件供我们使用。由于不是内置组件&#xff0c;需要安装才能使用。 一、安装扩展插件 安装方法&#xff1a; 1.访问uniapp官方文档组件部分&#xff1a;组件使用的入门教程 | uni-app官网 点击左侧…...