网站开发九大优势/seo网站优化培训厂家报价
写在前面
本文是基于野火 RTOS 教程对空闲任务和阻塞延时的详解。
一、什么是任务中的阻塞延时
- 说到阻塞延时,笔者的第一反应就是在单片机的 while 循环中,使用一个 for 循环不断递减一个大数,通过 CPU 不断执行一条指令的耗时进行延时。这种延时会占用 CPU 资源执行指令,在延时的时候 CPU 不能执行其他的指令。
- 但是注意,我们现在是想在 RTOS 中的任务实现阻塞延时,RTOS 可以有多个任务,所有所谓任务中的阻塞延时虽然也是阻塞其后的代码运行,但是只阻塞了他所在的那个任务中阻塞延时函数后面的代码。
- 也就是说,RTOS 中,任务中的阻塞延时就是先阻塞一下这个任务,然后把 CPU 使用权交给其他代码,虽然也是阻塞下文的代码执行,但是只阻塞这个任务的下文,CPU 在这个过程中可以执行其他任务中的指令,大大提高 CPU 利用率,和笔者印象中的阻塞延时并不一样。
二、空闲任务有什么用
- 空闲任务的优先级是所有任务中优先级最低的,当其他任务都在阻塞延时中,CPU 就会切换到空闲任务运行。
- 一般来说在空闲任务里面运行一些系统内存的清理工作,或者在空闲任务中让单片机休眠或者进入低功耗模式。
三、空闲任务的实现
- 定义空闲任务的任务栈
- 定义空闲任务的 TCB
- 空闲任务的创建
注意,空闲任务的任务栈和 TCB 变量我们都在 main.c
中声明为全局变量,但是同时,我们想在开启任务调度器的时候自动创建一个空闲任务,而 RTOS 的开发人员不用显式地去创建空闲任务,所以我们把空闲任务的创建集成在 void vTaskStartScheduler( void ) 这个函数中。这样,我们在启动调度器的同时就会自动创建一个空闲任务。代码如下:
void vTaskStartScheduler( void )
{
/*======================================创建空闲任务start==============================================*/ TCB_t *pxIdleTaskTCBBuffer = NULL; /* 用于指向空闲任务控制块 */StackType_t *pxIdleTaskStackBuffer = NULL; /* 用于空闲任务栈起始地址 */uint32_t ulIdleTaskStackSize;/* 获取空闲任务的内存:任务栈和任务TCB */vApplicationGetIdleTaskMemory( &pxIdleTaskTCBBuffer, &pxIdleTaskStackBuffer, &ulIdleTaskStackSize ); xIdleTaskHandle = xTaskCreateStatic( (TaskFunction_t)prvIdleTask, /* 任务入口 */(char *)"IDLE", /* 任务名称,字符串形式 */(uint32_t)ulIdleTaskStackSize , /* 任务栈大小,单位为字 */(void *) NULL, /* 任务形参 */(StackType_t *)pxIdleTaskStackBuffer, /* 任务栈起始地址 */(TCB_t *)pxIdleTaskTCBBuffer ); /* 任务控制块 *//* 将任务添加到就绪列表 */ vListInsertEnd( &( pxReadyTasksLists[0] ), &( ((TCB_t *)pxIdleTaskTCBBuffer)->xStateListItem ) );
/*======================================创建空闲任务end================================================*//* 手动指定第一个运行的任务 */pxCurrentTCB = &Task1TCB;/* 初始化系统时基计数器 */xTickCount = ( TickType_t ) 0U;/* 启动调度器 */if( xPortStartScheduler() != pdFALSE ){/* 调度器启动成功,则不会返回,即不会来到这里 */}
}
上面这段代码调用了 xTaskCreateStatic() 这个函数进行空闲任务的创建,但是这个函数需要传入空闲任务的任务栈和 TCB 变量,而我们把这些变量定义在了 main.c
中,所以需要使用 vApplicationGetIdleTaskMemory() 这个函数来使 vTaskStartScheduler() 函数中的任务指针等等变量指向定义在 main.c
中的任务栈和 TCB,然后再把这些任务指针等传入 xTaskCreateStatic() 中。vApplicationGetIdleTaskMemory() 的具体代码如下:
void vApplicationGetIdleTaskMemory( TCB_t **ppxIdleTaskTCBBuffer, StackType_t **ppxIdleTaskStackBuffer, uint32_t *pulIdleTaskStackSize )
{*ppxIdleTaskTCBBuffer=&IdleTaskTCB;*ppxIdleTaskStackBuffer=IdleTaskStack; *pulIdleTaskStackSize=configMINIMAL_STACK_SIZE;
}
四、任务中的阻塞延时怎么实现
具体想法如下:
- 为 TCB 添加记录延时时间的参数
- 在任务中调用阻塞延时函数时,会给 TCB 记录延时时间的参数进行赋值,然后调用任务切换函数
- 调用任务切换函数会产生 PendSV 中断,在 PendSV中断服务函数中会调用上下文切换函数 vTaskSwitchContext()
- 在上下文切换函数中,我们更新当前执行任务的指针。现在我们的思想是,如果当前任务是空闲任务,那么查看其他任务的延时是否结束,如果没有结束就继续执行空闲任务;如果当前执行的不是空闲任务,那么检查一下其他任务是否在延时中,如果不在延时中,就不忘初心进行任务切换,如果在延时中,就判断现在这个任务是否要延时,如果要延时就切换到空闲任务,否则就不进行任何切换。
- 上面检查任务是否在延时状态都是通过检查 TCB 的延时参数是否为 0 来实现的,我们使用 SysTick 中断来对 TCB 的延时参数进行定时修改
- 在每次 SysTick 中断触发时,我们更新一下系统时基计数器(以后有用),然后扫描一下就绪列表中所有 TCB 的延时参数,不为 0 就减 1,最后尝试任务切换
1. 为 TCB 添加记录延时时间的参数
typedef struct tskTaskControlBlock
{volatile StackType_t *pxTopOfStack; /* 栈顶 */ListItem_t xStateListItem; /* 任务节点 */StackType_t *pxStack; /* 任务栈起始地址 *//* 任务名称,字符串形式 */char pcTaskName[ configMAX_TASK_NAME_LEN ]; TickType_t xTicksToDelay; /* 用于延时 */
} tskTCB;
typedef tskTCB TCB_t;
2. 阻塞延时函数 vTaskDelay()
给 TCB 记录延时时间的参数进行赋值,然后调用任务切换函数。
void vTaskDelay( const TickType_t xTicksToDelay )
{TCB_t *pxTCB = NULL;/* 获取当前任务的TCB */pxTCB = pxCurrentTCB;/* 设置延时时间 */pxTCB->xTicksToDelay = xTicksToDelay;/* 任务切换 */taskYIELD();
}
3. 上下文切换函数 vTaskSwitchContext()
- 如果当前任务是空闲任务
- 查看其他任务的延时是否结束
- 没有结束 -> 继续执行空闲任务
- 结束 -> 跳转到其他任务
- 查看其他任务的延时是否结束
- 如果当前执行的不是空闲任务
- 检查一下其他任务是否在延时中
- 不在延时中 -> 进行任务切换
- 在延时中 -> 判断现在这个任务是否要延时
- 要延时就切换到空闲任务
- 否则就不进行任何切换
- 检查一下其他任务是否在延时中
void vTaskSwitchContext( void )
{/* 如果当前线程是空闲线程,那么就去尝试执行线程1或者线程2,看看他们的延时时间是否结束,如果线程的延时时间均没有到期,那就返回继续执行空闲线程 */if( pxCurrentTCB == &IdleTaskTCB ){if(Task1TCB.xTicksToDelay == 0){ pxCurrentTCB =&Task1TCB;}else if(Task2TCB.xTicksToDelay == 0){pxCurrentTCB =&Task2TCB;}else{return; /* 线程延时均没有到期则返回,继续执行空闲线程 */} }else{/*如果当前线程是线程1或者线程2的话,检查下另外一个线程,如果另外的线程不在延时中,就切换到该线程否则,判断下当前线程是否应该进入延时状态,如果是的话,就切换到空闲线程。否则就不进行任何切换 */if(pxCurrentTCB == &Task1TCB){if(Task2TCB.xTicksToDelay == 0){pxCurrentTCB =&Task2TCB;}else if(pxCurrentTCB->xTicksToDelay != 0){pxCurrentTCB = &IdleTaskTCB;}else {return; /* 返回,不进行切换,因为两个线程都处于延时中 */}}else if(pxCurrentTCB == &Task2TCB){if(Task1TCB.xTicksToDelay == 0){pxCurrentTCB =&Task1TCB;}else if(pxCurrentTCB->xTicksToDelay != 0){pxCurrentTCB = &IdleTaskTCB;}else {return; /* 返回,不进行切换,因为两个线程都处于延时中 */}}}
}
4. SysTick 中断对 TCB 的延时参数进行定时修改
/*
*************************************************************************
* SysTick中断服务函数
*************************************************************************
*/
void xPortSysTickHandler( void )
{/* 关中断 */vPortRaiseBASEPRI();/* 更新系统时基 */xTaskIncrementTick();/* 开中断 */vPortClearBASEPRIFromISR();
}
每次 SysTick 中断触发时,我们更新一下系统时基计数器(以后有用),然后扫描一下就绪列表中所有 TCB 的延时参数,不为 0 就减 1,最后尝试任务切换:
void xTaskIncrementTick( void )
{TCB_t *pxTCB = NULL;BaseType_t i = 0;/* 更新系统时基计数器xTickCount,xTickCount是一个在port.c中定义的全局变量 */const TickType_t xConstTickCount = xTickCount + 1;xTickCount = xConstTickCount;/* 扫描就绪列表中所有线程的xTicksToDelay,如果不为0,则减1 */for(i=0; i<configMAX_PRIORITIES; i++){pxTCB = ( TCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( ( &pxReadyTasksLists[i] ) );if(pxTCB->xTicksToDelay > 0){pxTCB->xTicksToDelay --;}}/* 任务切换 */portYIELD();
}
关于上面这段代码,有一段写得很奇怪:
/* 更新系统时基计数器xTickCount,xTickCount是一个在port.c中定义的全局变量 */const TickType_t xConstTickCount = xTickCount + 1;xTickCount = xConstTickCount;
笔者刚开始看到的时候想问:直接递增xTickCount不行吗,为什么要写成
const TickType_t xConstTickCount = xTickCount + 1;
xTickCount = xConstTickCount;
这样不是画蛇添足吗?使代码更复杂。
其实不然,在任务调度器中,xTickCount 变量用于记录系统的时基计数器。它的目的是跟踪系统运行的时间,并且根据需要递增。
直接递增 xTickCount 可能会导致并发问题。在多线程或多任务的情况下,如果有多个任务同时尝试递增 xTickCount,并且中间存在竞争条件,可能会导致计数不准确或不一致。
为了避免这种并发问题,代码中将递增操作分解为两个步骤:
首先,通过 const TickType_t xConstTickCount = xTickCount + 1; 将 xTickCount 的值复制到一个中间变量 xConstTickCount 中,并递增这个中间变量。
然后,将中间变量 xConstTickCount 的值赋回给 xTickCount,完成递增操作。
这样做的好处是,无论何时进行递增操作,代码都使用了一个稳定的中间值 xConstTickCount 来执行计算和更新。这确保了计数器 xTickCount 在整个递增过程中保持一致,并且不会受到其他任务的干扰。这样可以避免并发问题,提高代码的可靠性和正确性。
5. 最后是 SysTick 的相关初始化代码
在调度器启动函数 xPortStartScheduler() 函数中调用 vPortSetupTimerInterrupt():
/*
*************************************************************************
* 调度器启动函数
*************************************************************************
*/BaseType_t xPortStartScheduler( void )
{/*PendSV是一个用于低优先级任务切换的软件中断。通过触发PendSV中断,可以请求处理器在合适的时间切换到更高优先级的任务。PendSV中断具有最低的中断优先级,因此可以在其他中断处理完成后立即执行。*//* 配置PendSV 和 SysTick 的中断优先级为最低 */portNVIC_SYSPRI2_REG |= portNVIC_PENDSV_PRI;portNVIC_SYSPRI2_REG |= portNVIC_SYSTICK_PRI;//初始化SysTick中断vPortSetupTimerInterrupt();/* 启动第一个任务,不再返回 */prvStartFirstTask();/* 不应该运行到这里 */return 0;
}
初始化 SysTick 的函数 vPortSetupTimerInterrupt():
/*
*************************************************************************
* 初始化SysTick
*************************************************************************
*/
void vPortSetupTimerInterrupt( void )
{/* 设置重装载寄存器的值 */portNVIC_SYSTICK_LOAD_REG = ( configSYSTICK_CLOCK_HZ / configTICK_RATE_HZ ) - 1UL;/* 设置系统定时器的时钟等于内核时钟使能SysTick 定时器中断使能SysTick 定时器 */portNVIC_SYSTICK_CTRL_REG = ( portNVIC_SYSTICK_CLK_BIT | portNVIC_SYSTICK_INT_BIT |portNVIC_SYSTICK_ENABLE_BIT );
}
这里解释一下重装载寄存器的值怎么设置。计时器实际上是一个计数器,当接收到设定数量的脉冲后进行一次中断,而这个设定的数量就是重装载寄存器的值。
我们把计时器接入到 CPU 晶振后,由于晶振每隔一段固定时间发出一个脉冲信号,此时计时器就将重装载寄存器的值减 1,当重装载寄存器的值减到 0 后,就触发一次中断,由此完成了对晶振的高频率信号的分频。
注意,重装载寄存器的值是从 0 开始减的,所以设置时要减 1。
可以看到,我们使用 configSYSTICK_CLOCK_HZ / configTICK_RATE_HZ ) - 1UL 进行设置,configSYSTICK_CLOCK_HZ 实际上就是 CPU 的晶振频率,而 configTICK_RATE_HZ 就是我们设置 SysTick 的中断频率。
其中的宏定义为:
#define configCPU_CLOCK_HZ ( ( unsigned long ) 25000000 )
#define configTICK_RATE_HZ ( ( TickType_t ) 100 )/* SysTick 配置寄存器 */
#define portNVIC_SYSTICK_CTRL_REG ( * ( ( volatile uint32_t * ) 0xe000e010 ) )
#define portNVIC_SYSTICK_LOAD_REG ( * ( ( volatile uint32_t * ) 0xe000e014 ) )#ifndef configSYSTICK_CLOCK_HZ#define configSYSTICK_CLOCK_HZ configCPU_CLOCK_HZ/* 确保SysTick的时钟与内核时钟一致 */#define portNVIC_SYSTICK_CLK_BIT ( 1UL << 2UL )
#else#define portNVIC_SYSTICK_CLK_BIT ( 0 )
#endif#define portNVIC_SYSTICK_INT_BIT ( 1UL << 1UL )
#define portNVIC_SYSTICK_ENABLE_BIT ( 1UL << 0UL )
后记
如果您觉得本文写得不错,可以点个赞激励一下作者!
如果您发现本文的问题,欢迎在评论区或者私信共同探讨!
共勉!
相关文章:

【学习日记】【FreeRTOS】空闲任务与阻塞延时
写在前面 本文是基于野火 RTOS 教程对空闲任务和阻塞延时的详解。 一、什么是任务中的阻塞延时 说到阻塞延时,笔者的第一反应就是在单片机的 while 循环中,使用一个 for 循环不断递减一个大数,通过 CPU 不断执行一条指令的耗时进行延时。这…...

衣服材质等整理(时常更新)
参考文章&图片来源 https://zhuanlan.zhihu.com/p/390341736 00. 天然纤维 01. 化学纤维 02. 聚酯纤维(即,涤纶) 一种由有机二元酸和二元醇通过化学缩聚制成的合成纤维。具有出色的抗皱性和保形性,所制衣物在穿着过程中不容…...

电子商务环境下旅游价值链
迈克尔 ・ 波特(Michael E. Porter)在其《竞争优势》一书中提出了“价值链” 的概念,并认为一家企业最核心的竞争优势在于对价值链的设计。虽然迈克尔 ・ 波 特提出的价值链主要是针对企业内部的价值链,但他视价值链为一系列连续完成的 活动ÿ…...

spring源码分析bean的生命周期(下)
doGetBean()执行过程 createBean()执行过程 一、DependsOn注解 spring创建对象之前会判断类上是否加了DependsOn注解,加了会遍历然后会添加到一个map中,spring会先创建DependsOn注解指定的类 二、spring类加载器 在合并BeanDefinition,确定…...

完美解决Github提交PR后报错:File is not gofumpt-ed (gofumpt)
问题阐述 最近在Github上提交PR后,遇到了这么一个问题:golangci-lint运行失败,具体原因是File is not gofumpt-ed (gofumpt)。 名词解释 golangci-lint: golangci-lint 是Go语言社区中常用的代码质量检查工具,它可以…...

pytorch3d成功安装
一、pytorch3d是什么? PyTorch3D的目标是帮助加速深度学习和3D交叉点的研究。3D数据比2D图像更复杂,在从事Mesh R-CNN和C3DPO等项目时,我们遇到了一些挑战,包括3D数据表示、批处理和速度。我们开发了许多有用的算子和抽象…...

【vue3】同个页面引入多个图表组件实现自适应的方法
首先说明,此方案仅针对vue3项目在同一个页面引入了多个图表组件,因为我发现不能框架不同的引入,resize的写法还不同 window.addEventListener("resize", function() {...// 在此处重新调用即可 }以下是具体写法: 循环…...

一文了解汽车芯片的分类及用途介绍
汽车芯片按其功能可分为控制类(MCU和AI芯片)、功率类、传感器和其他(如存储器)四种类型。市场基本被国际巨头所垄断。人们常说的汽车芯片是指汽车里的计算芯片,按集成规模可分为MCU芯片和AI芯片(SoC芯片&am…...

Linux0.11内核源码解析-truncate.c
truncate文件只要实现释放指定i节点在设备上占用的所有逻辑块,包括直接块、一次间接块、二次间接块。从而将文件节点对应的文件长度截为0,并释放占用的设备空间。 索引节点的逻辑块连接方式 释放一次间接块 static void free_ind(int dev,int block) {…...

LED驱动型IC芯片的原理介绍
一、LED驱动器是什么 LED驱动器(LED Driver),是指驱动LED发光或LED模块组件正常工作的电源调整电子器件。由于LED PN结的导通特性决定,它能适应的电源电压和电流变动范围十分狭窄,稍许偏离就可能无法点亮LED或者发光效…...

VLAN实验
实验题目如下: 实验拓扑如下: 实验要求如下: 【1】PC1/3的接口均为access模式,且属于van2,在同一网段 【2】PC2/4/5/6的IP地址在同一网段,与PC1/3不在同一网段 【3】PC2可以访问4/5/6,PC4不能…...

Qt应用开发(基础篇)——高级纯文本窗口 QPlainTextEdit
一、前言 QPlainTextEdit类继承于QAbstractScrollArea,QAbstractScrollArea继承于QFrame,是Qt用来显示和编辑纯文本的窗口。 滚屏区域基类https://blog.csdn.net/u014491932/article/details/132245486?spm1001.2014.3001.5501框架类QFramehttps://blo…...

三维可视化平台有哪些?Sovit3D可视化平台怎么样?
随着社会经济的发展和数字技术的进步,互联网行业发展迅速。为了适应新时代社会发展的需要,大数据在这个社会经济发展过程中随着技术的进步而显得尤为重要。同时,大数据技术的快速发展进程也推动了可视化技术的飞速发展,国内外各类…...

Xxl-job安装部署以及SpringBoot集成Xxl-job使用
1、安装Xxl-job: 可以使用docker拉取镜像部署和源码编译两种方式,这里选择源码编译安装。 代码拉取地址: https://github.com/xuxueli/xxl-job/tree/2.1.2 官方开发文档: https://www.xuxueli.com/xxl-job/#%E3%80%8A%E5%88%…...

【【超声波避障小车代码】】
超声波避障小车代码 #include <reg51.h> //通用51头文件 #include <intrins.h> //使用了_nop()_函数#define uchar unsigned char //用 uchar 表示 unsigned char 类型 #define uint unsigned int //用 uint 表示 unsigned int 类型sbit EN…...

TDI(Time Delay Integration)
TDI(Time Delay Integration)是一种特殊的图像采集技术,常用于线阵CCD(Charge-Coupled Device)相机。TDI技术可以在保持高分辨率的同时增强图像的信噪比(Signal-to-Noise Ratio, SNR)࿰…...

RHCE——一、安装部署及例行性工作
RHCE 一、网络服务1、准备工作2、RHEL9操作系统的安装部署3、配置并优化RHEL9操作系统4、网络配置5、修改网络连接 二、例行性工作1、单一执行的例行性工作2、循环执行的例行性工作 三、书写定时任务的注意事项四、系统级别的计划任务五、实验1、实验一:编写脚本tes…...

服务器数据库中了360后缀勒索病毒怎么办?360后缀勒索病毒的加密形式
随着信息技术的发展,企业的计算机服务器数据库变得越来越重要。然而,在数字时代,网络上的威胁也日益增多。近期,我们收到很多企业的求助,企业的计算机服务器遭到了360后缀勒索病毒的攻击,导致服务器内的所有…...

期权就是股指期货吗,哪个好做一点?
近年来,场内ETF期权产品不断扩大,越来越多的投资者有投资期权的想法。当我们看到期权时,我们会不知不觉地想到期货,虽然期货与期权只有一个字的区别,但实际上有很大的不同,那么期权就是股指期货吗ÿ…...

week32
本周目标: Belady现象的解释 操作系统 计组IO/MM chapter 刷力扣 ubuntu磁盘/网络/命令行进阶*1 tarball之类的使用 Question 大数据系统实验要学吗? 据说课讲得不好这是一门类似数据库的课程——大数据之hadoop / hive / hbase 的区别是什么&a…...

【数据库】P1 数据库基本常识
数据库基本常识 数据库 ≠ 数据库管理系统表(Table)SQL是什么 数据库 ≠ 数据库管理系统 数据库是保存有组织的数据的容器,数据库称为 DB(DataBase);数据库管理系统是创建和操纵数据库的软件,数…...

c语言——计算两个数的乘积
//计算两个数的乘积 #include<stdio.h> #include<stdlib.h> int main() {double firstNumber,secondNumber,product;printf("两个浮点数:");scanf("%lf,%lf",&firstNumber,&secondNumber);productfirstNumber*secondNumber…...

单机模型并行最佳实践
单机模型并行最佳实践 模型并行在分布式训练技术中被广泛使用。 先前的帖子已经解释了如何使用 DataParallel 在多个 GPU 上训练神经网络; 此功能将相同的模型复制到所有 GPU,其中每个 GPU 消耗输入数据的不同分区。 尽管它可以极大地加快训练过程&…...

编程练习(3)
一.选择题 第一题: 函数传参的两个变量都是传的地址,而数组名c本身就是地址,int型变量b需要使用&符号,因此答案为A 第二题: 本题考察const修饰指针变量,答案为A,B,C,D 第三题: 注意int 型变…...

PyTorch学习笔记(十三)——现有网络模型的使用及修改
以分类模型的VGG为例 vgg16_false torchvision.models.vgg16(weightsFalse) vgg16_true torchvision.models.vgg16(weightsTrue) 设置为 False 的情况,相当于网络模型中的参数都是初始化的、默认的设置为 True 时,网络模型中的参数在数据集上是训练好…...

Python爬虫的scrapy的学习(学习于b站尚硅谷)
目录 一、scrapy 1. scrapy的安装 (1)什么是scrapy (2)scrapy的安装 2. scrapy的基本使用 (1)scrap的使用步骤 (2)代码的演示 3. scrapy之58同城项目结构和基本方法&…...

“深入解析JVM:揭秘Java虚拟机的工作原理“
标题:深入解析JVM:揭秘Java虚拟机的工作原理 摘要:本文将深入解析Java虚拟机(JVM)的工作原理,探讨其内部结构和运行机制。我们将介绍JVM的组成部分、类加载过程、内存管理、垃圾回收、即时编译等关键概念&…...

【数据结构与算法】十大经典排序算法-归并排序
🌟个人博客:www.hellocode.top 🏰Java知识导航:Java-Navigate 🔥CSDN:HelloCode. 🌞知乎:HelloCode 🌴掘金:HelloCode ⚡如有问题,欢迎指正&#…...

基于深度学习创建-表情符号--附源码
表情符号深度学习概述 如今,我们使用多种表情符号或头像来表达我们的心情或感受。它们充当人类的非语言线索。它们成为情感识别、在线聊天、品牌情感、产品评论等的关键部分。针对表情符号驱动的故事讲述的数据科学研究不断增加。 从图像中检测人类情绪非常流行,这可能是由…...

.netcore grpc的proto文件字段详解
一、.proto文件字段概述 grpc的接口传输参数都是根据.proto文件约定的字段格式进行传输的grpc提供了多种类型字段;主要包括标量值类型(基础类型)、日期时间、可为null类型、字节、列表、字典、Any类型(任意类型)、One…...