当前位置: 首页 > news >正文

深入浅出Pytorch函数——torch.nn.init.orthogonal_

分类目录:《深入浅出Pytorch函数》总目录
相关文章:
· 深入浅出Pytorch函数——torch.nn.init.calculate_gain
· 深入浅出Pytorch函数——torch.nn.init.uniform_
· 深入浅出Pytorch函数——torch.nn.init.normal_
· 深入浅出Pytorch函数——torch.nn.init.constant_
· 深入浅出Pytorch函数——torch.nn.init.ones_
· 深入浅出Pytorch函数——torch.nn.init.zeros_
· 深入浅出Pytorch函数——torch.nn.init.eye_
· 深入浅出Pytorch函数——torch.nn.init.dirac_
· 深入浅出Pytorch函数——torch.nn.init.xavier_uniform_
· 深入浅出Pytorch函数——torch.nn.init.xavier_normal_
· 深入浅出Pytorch函数——torch.nn.init.kaiming_uniform_
· 深入浅出Pytorch函数——torch.nn.init.kaiming_normal_
· 深入浅出Pytorch函数——torch.nn.init.trunc_normal_
· 深入浅出Pytorch函数——torch.nn.init.orthogonal_
· 深入浅出Pytorch函数——torch.nn.init.sparse_


torch.nn.init模块中的所有函数都用于初始化神经网络参数,因此它们都在torc.no_grad()模式下运行,autograd不会将其考虑在内。

根据Saxe, A等人在《Exact solutions to the nonlinear dynamics of learning in deep linear neural networks》中描述的方法,用(半)正交矩阵填充输入的张量或变量。输入张量必须至少是2维的,对于更高维度的张量,超出的维度会被展平,视作行等于第一个维度,列等于稀疏矩阵乘积的2维表示,其中非零元素生成自 N ( 0 , std 2 ) N(0, \text{std}^2) N(0,std2)

语法

torch.nn.init.orthogonal_(tensor, gain=1)

参数

  • tensor:[Tensor] 一个 N N N维张量torch.Tensor,其中 N ≥ 2 N\geq 2 N2
  • gain:[可选] 比例因子

返回值

一个torch.Tensor且参数tensor也会更新

实例

w = torch.empty(3, 5)
nn.init.orthogonal_(w)

函数实现

def orthogonal_(tensor, gain=1):r"""Fills the input `Tensor` with a (semi) orthogonal matrix, asdescribed in `Exact solutions to the nonlinear dynamics of learning in deeplinear neural networks` - Saxe, A. et al. (2013). The input tensor must haveat least 2 dimensions, and for tensors with more than 2 dimensions thetrailing dimensions are flattened.Args:tensor: an n-dimensional `torch.Tensor`, where :math:`n \geq 2`gain: optional scaling factorExamples:>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_LAPACK)>>> w = torch.empty(3, 5)>>> nn.init.orthogonal_(w)"""if tensor.ndimension() < 2:raise ValueError("Only tensors with 2 or more dimensions are supported")if tensor.numel() == 0:# no-opreturn tensorrows = tensor.size(0)cols = tensor.numel() // rowsflattened = tensor.new(rows, cols).normal_(0, 1)if rows < cols:flattened.t_()# Compute the qr factorizationq, r = torch.linalg.qr(flattened)# Make Q uniform according to https://arxiv.org/pdf/math-ph/0609050.pdfd = torch.diag(r, 0)ph = d.sign()q *= phif rows < cols:q.t_()with torch.no_grad():tensor.view_as(q).copy_(q)tensor.mul_(gain)return tensor

相关文章:

深入浅出Pytorch函数——torch.nn.init.orthogonal_

分类目录&#xff1a;《深入浅出Pytorch函数》总目录 相关文章&#xff1a; 深入浅出Pytorch函数——torch.nn.init.calculate_gain 深入浅出Pytorch函数——torch.nn.init.uniform_ 深入浅出Pytorch函数——torch.nn.init.normal_ 深入浅出Pytorch函数——torch.nn.init.c…...

ORACLE中UNION、UNION ALL、MINUS、INTERSECT学习

1、UNION和UNION ALL的使用与区别 如果我们需要将两个select语句的结果作为一个整体显示出来&#xff0c;我们就需要用到union或者union all关键字。union的作用是将多个结果合并在一起显示出来。 union和union all的区别是union会自动压缩多个结果集合中的重复结果&#xff…...

【k8s、云原生】基于metrics-server弹性伸缩

第四阶段 时 间&#xff1a;2023年8月18日 参加人&#xff1a;全班人员 内 容&#xff1a; 基于metrics-server弹性伸缩 目录 一、Kubernetes部署方式 &#xff08;一&#xff09;minikube &#xff08;二&#xff09;二进制包 &#xff08;三&#xff09;Kubeadm 二…...

回归预测 | MATLAB实现WOA-SVM鲸鱼算法优化支持向量机多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现WOA-SVM鲸鱼算法优化支持向量机多输入单输出回归预测&#xff08;多指标&#xff0c;多图&#xff09; 目录 回归预测 | MATLAB实现WOA-SVM鲸鱼算法优化支持向量机多输入单输出回归预测&#xff08;多指标&#xff0c;多图&#xff09;效果一览基本介绍程…...

VSCode快捷键

CtrlShiftP&#xff0c;F1&#xff1a;显示命令面板 CtrlP&#xff1a;快速打开 CtrlShiftN&#xff1a;新窗口/实例 CtrlShiftW&#xff1a;关闭窗口/实例 CtrlX&#xff1a;剪切行 CtrlC&#xff1a;复制行 ALT↑/↓&#xff1a;上下移动 ShiftAlt↓/↑&#xff1a;向…...

贪心算法求数组中能组成三角形的最大周长

题目&#xff1a;三角形的最大周长 给定由一些正数(代表长度)组成的数组arr,返回由其中三个长度组成的、面积不为零的三角形的最大周长。 如果不能形成任何面积不为零的三角形&#xff0c;返回0。 分析&#xff1a; 对数组排序&#xff0c;再从大到小选择三个数&#xff0c;再…...

VMWare Workstation 17 Pro 网络设置 桥接模式 网络地址转换(NAT)模式 仅主机模式

文章目录 网络模式配网要求CentOSDHCP虚拟网络桥接模式默认配置测试手动配置测试 网络地址转发模式 (NAT)还原配置虚拟网络配置默认配置测试手动配置测试 仅主机模式 网络模式 桥接模式: 主机与虚拟机对等, 虚拟机注册到主机所在的局域网, 会占用该网络的IP该局域网内的所有机…...

拒绝摆烂!C语言练习打卡第四天

&#x1f525;博客主页&#xff1a;小王又困了 &#x1f4da;系列专栏&#xff1a;每日一练 &#x1f31f;人之为学&#xff0c;不日近则日退 ❤️感谢大家点赞&#x1f44d;收藏⭐评论✍️ 目录 一、选择题 &#x1f4dd;1.第一题 &#x1f4dd;2.第二题 &#x1f4d…...

KubeSphere 社区双周报 | Java functions framework 支持 SkyWalking | 2023.8.4-8.17

KubeSphere 社区双周报主要整理展示新增的贡献者名单和证书、新增的讲师证书以及两周内提交过 commit 的贡献者&#xff0c;并对近期重要的 PR 进行解析&#xff0c;同时还包含了线上/线下活动和布道推广等一系列社区动态。 本次双周报涵盖时间为&#xff1a;2023.08.04-2023.…...

【学习笔记之java】使用RestTemplate调用第三方接口

1.首先需要导入依赖 <!-- RestTemplate使用导入的依赖--><dependency><groupId>org.apache.httpcomponents</groupId><artifactId>httpclient</artifactId><version>4.5.13</version></dependency>2.跟启动类同级创建…...

数据集成革新:去中心化微服务集群的无限潜能

在当今数据密集型的业务环境下&#xff0c;传统的集中式架构已经难以满足高可用性和高并发性的要求。而去中心化微服务集群则通过分散式的架构&#xff0c;将系统划分为多个小型的、独立部署的微服务单元&#xff0c;每个微服务负责特定的业务功能&#xff0c;实现了系统的高度…...

后端返回可下载的xlsx文件,但是前端接收下载后为乱码

我的接收数据进行处理的代码为&#xff1a; download_signal_list() {return new Promise((resolve, reject) > {get_download_signal({project_id: this.projectId,version_id: this.versionId}).then(response > {const url window.URL.createObjectURL(new Blob([res…...

提升资源管理效率必备工具推荐

一、数据传输 1、Textify&#xff08;PC&#xff09; 作为一名技术人员&#xff0c;需要经常研究各种技术&#xff0c;因此&#xff0c;复制粘贴的操作十分常见。 Textify可以快速复制各种控件中的文本&#xff0c;包括浏览器中当前页面的标题、聊天窗口中各个部分的文字、桌…...

HJ23 删除字符串中出现次数最少的字符

描述 实现删除字符串中出现次数最少的字符&#xff0c;若出现次数最少的字符有多个&#xff0c;则把出现次数最少的字符都删除。输出删除这些单词后的字符串&#xff0c;字符串中其它字符保持原来的顺序。 数据范围&#xff1a;输入的字符串长度满足 1≤n≤20 1≤n≤20 &…...

文心一言 VS 讯飞星火 VS chatgpt (76)-- 算法导论7.3 1题

一、如果用go语言&#xff0c;为什么我们分析随机化算法的期望运行时间&#xff0c;而不是其最坏运行时间呢? 文心一言&#xff1a; 在分析算法的性能时&#xff0c;期望运行时间是一个重要的指标&#xff0c;它描述了算法在平均情况下的表现。期望运行时间考虑了所有可能的…...

Leetcode - 滑动窗口

文章目录 1. 滑动窗口2. 举例2.1 无重复字符的最长子串2.2 长度最小的子数组2.3 滑动窗口最大值2.4 最小覆盖子串2.5 删除有序数组中的重复项 1. 滑动窗口 滑动窗口的大概思想如下&#xff1a; 可以通过两个指针来标识窗口的边界。窗口的长度是可以固定的&#xff0c;也可以是…...

如何保证数据传输的安全?

要确保数据传输的安全&#xff0c;您可以采取以下措施&#xff1a; 使用加密协议&#xff1a;使用安全的传输协议&#xff0c;如HTTPS(HTTP over SSL/TLS)或其他安全协议&#xff0c;以保护数据在传输过程中的安全性。加密协议可以有效防止数据被窃听或篡改。 强化身份验证&…...

政务、商务数据资源有效共享:让数据上“链”,记录每一个存储过程!

数据上链是目前“区块链”最常见的场景。因为链上所有参与方都分享了统一的事实来源&#xff0c;所有人都可以即时获得最新的信息&#xff0c;数据可用不可见。因此&#xff0c;不同参与方之间的协作效率得以大幅提高。同时&#xff0c;因为区块链上的数据难以篡改&#xff0c;…...

xml转map工具类

背景&#xff1a;最近遇到接口返回是xml&#xff0c;所以需要整一个转换的工具类&#xff0c;方便后续其他xml处理。 依赖引入&#xff1a; <dependency><groupId>dom4j</groupId><artifactId>dom4j</artifactId><version>1.1</versi…...

C++并发多线程--std::future_status、std::shared_future和std::atomic的使用

1--std::future_status的使用 std::future_status成员函数含有三种状态&#xff1a;timeout&#xff08;执行超时&#xff09;、ready&#xff08;执行完毕&#xff09;和deferred&#xff08;延迟执行&#xff09;&#xff0c;其中 deferred 状态需要用 std::launch::deferred…...

AI Agent与Agentic AI:原理、应用、挑战与未来展望

文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例&#xff1a;使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例&#xff1a;使用OpenAI GPT-3进…...

基于Docker Compose部署Java微服务项目

一. 创建根项目 根项目&#xff08;父项目&#xff09;主要用于依赖管理 一些需要注意的点&#xff1a; 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件&#xff0c;否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...

HDFS分布式存储 zookeeper

hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架&#xff0c;允许使用简单的变成模型跨计算机对大型集群进行分布式处理&#xff08;1.海量的数据存储 2.海量数据的计算&#xff09;Hadoop核心组件 hdfs&#xff08;分布式文件存储系统&#xff09;&a…...

Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析

Java求职者面试指南&#xff1a;Spring、Spring Boot、MyBatis框架与计算机基础问题解析 一、第一轮提问&#xff08;基础概念问题&#xff09; 1. 请解释Spring框架的核心容器是什么&#xff1f;它在Spring中起到什么作用&#xff1f; Spring框架的核心容器是IoC容器&#…...

libfmt: 现代C++的格式化工具库介绍与酷炫功能

libfmt: 现代C的格式化工具库介绍与酷炫功能 libfmt 是一个开源的C格式化库&#xff0c;提供了高效、安全的文本格式化功能&#xff0c;是C20中引入的std::format的基础实现。它比传统的printf和iostream更安全、更灵活、性能更好。 基本介绍 主要特点 类型安全&#xff1a…...

【Elasticsearch】Elasticsearch 在大数据生态圈的地位 实践经验

Elasticsearch 在大数据生态圈的地位 & 实践经验 1.Elasticsearch 的优势1.1 Elasticsearch 解决的核心问题1.1.1 传统方案的短板1.1.2 Elasticsearch 的解决方案 1.2 与大数据组件的对比优势1.3 关键优势技术支撑1.4 Elasticsearch 的竞品1.4.1 全文搜索领域1.4.2 日志分析…...

Vue 模板语句的数据来源

&#x1f9e9; Vue 模板语句的数据来源&#xff1a;全方位解析 Vue 模板&#xff08;<template> 部分&#xff09;中的表达式、指令绑定&#xff08;如 v-bind, v-on&#xff09;和插值&#xff08;{{ }}&#xff09;都在一个特定的作用域内求值。这个作用域由当前 组件…...

保姆级【快数学会Android端“动画“】+ 实现补间动画和逐帧动画!!!

目录 补间动画 1.创建资源文件夹 2.设置文件夹类型 3.创建.xml文件 4.样式设计 5.动画设置 6.动画的实现 内容拓展 7.在原基础上继续添加.xml文件 8.xml代码编写 (1)rotate_anim (2)scale_anim (3)translate_anim 9.MainActivity.java代码汇总 10.效果展示 逐帧…...

高防服务器价格高原因分析

高防服务器的价格较高&#xff0c;主要是由于其特殊的防御机制、硬件配置、运营维护等多方面的综合成本。以下从技术、资源和服务三个维度详细解析高防服务器昂贵的原因&#xff1a; 一、硬件与技术投入 大带宽需求 DDoS攻击通过占用大量带宽资源瘫痪目标服务器&#xff0c;因此…...

云安全与网络安全:核心区别与协同作用解析

在数字化转型的浪潮中&#xff0c;云安全与网络安全作为信息安全的两大支柱&#xff0c;常被混淆但本质不同。本文将从概念、责任分工、技术手段、威胁类型等维度深入解析两者的差异&#xff0c;并探讨它们的协同作用。 一、核心区别 定义与范围 网络安全&#xff1a;聚焦于保…...