当前位置: 首页 > news >正文

【Golang系统开发】搜索引擎(2) 压缩词典

写在前面

这篇文章我们就给出一系列的数据结构,使得词典能达到越来越高的压缩比。当然,和倒排索引记录表的大小相比,词典只占据了非常小的空间。那么为什么要对词典进行压缩呢?

这是因为决定信息检索系统的查询响应时间的一个重要因素就是磁盘的访问次数,而如果有部分词典存在于磁盘上,那么在处理查询时就需要更多的磁盘访问次数。 因此,词典压缩的主要目的是可以将词典放在内存当中,这样才会获得很高的查询吞吐率。那么如何能将更多的词典压缩在有限的内存中呢?

1. 词典看成单一字符串

最简单的词典的数据结构就是整个词典采用定长数组来存储且所有词项按照词典序排序。假设对每个词项采用20B的固定长度存储,文档频率采用4B存储,词项到倒排索引也采用4B存储。这里的4B指针能够访问4GB的地址空间(4B–>32位–>2的32次方–>4GB)。

在这里插入图片描述
这样即使我们的词典有 四百万 个,我们所占的内存就只是 4,000,000 * (20+4+4) B = 112 MB,只是一百多兆而已,这非常的压缩。

但是很明显,采用这种定长方法来存储词典存在空间浪费。一个中文三个字节,很多情况下我们的词典只是两个中文,也就是六个字节,所以会有 14字节的浪费 。但是如果是一些特定的词语超过了20字节(比如中南财经政法大学),这里又存不下去。一种解决上述缺陷的方法是将所有的词项存成一个长字符串,并给每个词项增加一个定位指针,他在指向下一词项的同时也表示这当前词项的结束。 同以往一样,仍然可以通过二分查法定位到所需的词项,但是现在的表更小了。

由于每20B能够节省下12B,所以相当于前面的定长机制而言,这种机制能够在词项存储上节省大约60%的空间。当然,以上计算没有包括指向词项的指针所消耗的空间。所有的这些指针寻址的空间大小为 400000 ∗ 8 = 3.2 ∗ 1 0 6 400000 * 8 = 3.2 * 10^6 4000008=3.2106 ,因此一个指针 可以用 log ⁡ 2 ( 3.2 ) ∗ 1 0 2 \log_2(3.2)*10^2 log2(3.2)102 约等于 22 位 或者 3B来表示

在这里插入图片描述
将整个词条看成一个长字符串的词典存储方式,其中指向下一词项的指针同时也标志着当前词项的结束。

在这种方式下,词条就将所有上述的 4,000,000 * (20+4+4) B = 112 MB 压缩到了 4,000,000 * (3+4+4+8) B = 76 MB ,这个 8 指的是每个词项的平均长度。这种就从 112MB --> 76MB 大大降低了1/3

2. 按块存储

我们可以根据上一节的结果进行再一次的压缩:将长字符串中的词项进行分组变成大小为k的块,即k个词项一组,然后对每个块只保留第一个词项的指针。同时用一个额外字典将每个词项的长度存储在每个词项的首部。因此,每个块而已,可以减少k-1个词项指针,但是需要额外的kB来保存k个词项的首部。

在这里插入图片描述
因此,对每个块而言,可以减少k-1个词项指针,到那时需要额外的kB来保存k个词项的长度。对于k=4,词项指针的存储将会减少 (k-1) * 3 = 9B ,但是同时需要增加 k=4B 来存储词项的长度。因此在按块存储的方式下,没k=4个词项的方式下,每k=4个词项就会节省出5B,所以总共节省的空间位 400000 * 1/4 * 5 = 5 MB,也就再次减少了5MB,在 76MB 的基础上又少了 71MB。

显然,k越大,压缩率也就越高。但是,在压缩和词项查找速度之间必须要保持某种平衡。否则会导致查找速率偏慢。

除此之外,还有一种前端编码方式的压缩,也就是将上面多个词的公共部分提取出来,这样能减少很多的空间。,这里就不过多讲解了。

相关文章:

【Golang系统开发】搜索引擎(2) 压缩词典

写在前面 这篇文章我们就给出一系列的数据结构,使得词典能达到越来越高的压缩比。当然,和倒排索引记录表的大小相比,词典只占据了非常小的空间。那么为什么要对词典进行压缩呢? 这是因为决定信息检索系统的查询响应时间的一个重…...

clickhouse修改默认密码

1.明文密码 vim /etc/clickhouse-server/users.xml找到下面的语句,增加明文密码 <password>123456789</password> 2. sha256密码 # echo -n 123456789 | openssl dgst -sha256 (stdin) 15e2b0d3c33891ebb0f1ef609ec419420c20e320ce94c65fbc8c3312448eb225 修改…...

基于java在线捐赠系统设计与实现

摘要 近年来&#xff0c;随着网络的快速发展&#xff0c;由于网络的开放性和便利性&#xff0c;具有广阔的发展前景。 本文设计并实现了医药捐赠系统。通过分析确定由两个不同的用户组成&#xff0c;每个用户具有不同的功能。它还可以帮助用户在线求助、申请项目、发表留言等&a…...

【前端】vscode javascript 代码片段失效问题解决

1. 文件--首选项--用户代码片段-vue.json : 添加 // { // // Place your global snippets here. Each snippet is defined under a snippet name and has a scope, prefix, body and // // description. Add comma separated ids of the languages where the snippet is app…...

AE-卡通人物解说动画视频的制作

目录 1.导入卡通人物图片和音频文件 2.新建合成 3.在卡通人物图片上添加效果和表达式 4.在音频文件上添加效果和表达式 5.将卡通人物中的 CC Split2 中分割1 表达式链接到滑块中 6.卡通人物根据音频文件自动匹配口型。 AE制作卡通人物解说视频&#xff0c;卡通人物口型根据…...

Linux 查看日志

在 Linux 中&#xff0c;内核日志使用 printk 函数进行输出。你可以通过以下方法查看 printk 的日志&#xff1a; 使用 dmesg 命令&#xff1a; dmesg 这个命令会显示内核环缓冲区中的日志消息&#xff0c;包括使用 printk 输出的消息。你可以通过滚动浏览输出来查看完整的日志…...

使用IO多路复用select完成TCP循环服务器接收客户端消息并打印

服务器 客户端 结果...

unity之Input.GetKeyDown与Input.GetKey区别

文章目录 Input.GetKeyDown与Input.GetKey区别 Input.GetKeyDown与Input.GetKey区别 Input.GetKey 和 Input.GetKeyDown 是 Unity 中用于检测按键状态的两个不同函数。它们之间的区别在于何时触发。 Input.GetKey(KeyCode key): 这个函数会在用户按住指定的键时触发&#xff0…...

excel 核心快捷键用法

1、wps怎样只复制公示计算出来的数据 1.1、按下快捷键“CtrlC”&#xff0c;复制该单元格。 1.2、按下快捷键“ShiftCtrlV”&#xff0c;即“粘贴为数值”&#xff0c;即可只复制数字而不复制该单元格的公式 1.3、wps怎样只复制公示计算出来的数据_百度知道https://zhidao.baid…...

postgresql

源码安装 ./configure --prefix/apps/pgsql make world -j4 make install-world useradd -s /bin/bash -m -d /home/postgres postgres echo -e ‘123456\n123456’ | passwd postgres mkdir -pv /pgsql/data chown postgres:postgres /pgsql/data/ 设置环境变量 vim /etc/…...

AutoSAR配置与实践(基础篇)3.2 BSW中的I/O架构和模块详解

传送门 -> AUTOSAR配置与实践总目录 AutoSAR配置与实践(基础篇)3.2 BSW中的I/O架构和模块详解 一、 BSW中的I/O架构和模块详解1.1 I/O 模块构成1.2 各子模块功能详解二、举例说明I/O 模块如何配合完成信号采集2.1 硬件处理先行 (step1-4)2.2 AUTOSAR软件登场(step 5-7)2.3…...

基于Java+SpringBoot+Vue的学校田径运动会管理系统【源码+论文+演示视频+包运行成功】

博主介绍&#xff1a;✌擅长Java、微信小程序、Python、Android等&#xff0c;专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;&#x1f3fb; 不然下次找不到哟 Java项目精品实战案…...

使用 Visual Studio Code Docker 工具调试 .NET 容器

作者&#xff1a;Chet Husk 排版&#xff1a;Alan Wang Visual Studio Code Docker 工具已发布1.26.0版本&#xff0c;这个版本为使用 .NET SDK 构建和调试容器映像提供了内置支持。 VS Code 中的 Docker 调试 Visual Studio Code Docker 工具使开发人员可以轻松入门容器。它…...

AI引擎助力,CamScanner智能高清滤镜开启扫描新纪元!

文章目录 ⭐ 写在前面⭐ 突破图像处理难点&#xff1a;扫描全能王的独特优势⭐ 耳听为虚&#xff0c;眼见为实⭐ 产品背后的主要核心&#xff1a;AI-Scan助力⭐ 深度学习助力智能文档处理的国际化进程⭐ 品味智能文档处理的轻松与精准 ⭐ 写在前面 在数字化快速发展的今天&…...

opencv进阶07-支持向量机cv2.ml.SVM_create()简介及示例

支持向量机&#xff08;Support Vector Machine&#xff0c;SVM&#xff09;是一种二分类模型&#xff0c;目标是寻找一个标准&#xff08;称为超平面&#xff09;对样本数据进行分割&#xff0c;分割的原则是确保分类最优化&#xff08;类别之间的间隔最大&#xff09;。当数据…...

LA@n维向量@解析几何向量和线性代数向量

文章目录 概念n维向量向量类型实向量和复向量行向量和列向量行列向量的转换特殊向量向量运算 矩阵的向量分块&#x1f47a; 解析几何向量和线性代数向量&#x1f47a;向量空间 n n n维向量空间 n n n维空间的 n − 1 n-1 n−1维超平面 概念 n维向量 由 n n n个有次序的数 a …...

go 协程并发数控制

错误的写法&#xff1a; 这里的<-ch 是为了从channel 中读取 数据&#xff0c;为了不使channel通道被写满&#xff0c;阻塞 go 协程数的创建。但是请注意&#xff0c;go workForDraw(v, &wg) 是不阻塞后续的<-ch 执行的&#xff0c;所以就一直go workForDraw(v, &…...

MySQL的安装以及卸载

下载官网 https://www.mysql.com/ 切到下载tab页 找到 MySQL Community Server 或者 MySQL Community (GPL) Downloads --> MySQL Community Server 点击download按钮&#xff1a; 点击download进入下载页面选择No thanks, just start my download就可以开始下载了。 下…...

LRU算法与Caffeine、Redis中的缓存淘汰策略

推荐阅读 AI文本 OCR识别最佳实践 AI Gamma一键生成PPT工具直达链接 玩转cloud Studio 在线编码神器 玩转 GPU AI绘画、AI讲话、翻译,GPU点亮AI想象空间 资源分享 「java、python面试题」来自UC网盘app分享&#xff0c;打开手机app&#xff0c;额外获得1T空间 https://dr…...

HTML笔记(3)

表单标签 用于登录、注册界面&#xff0c;以采集用户输入的信息&#xff0c;把信息采集到之后&#xff0c;用户一点按钮&#xff0c;就会把这些信息发送到服务端&#xff0c;服务端就可以把这些数据存储到数据库&#xff0c;所以表单是一个非常重要的html标签&#xff0c;它主要…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)

题目&#xff1a;3442. 奇偶频次间的最大差值 I 思路 &#xff1a;哈希&#xff0c;时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况&#xff0c;哈希表这里用数组即可实现。 C版本&#xff1a; class Solution { public:int maxDifference(string s) {int a[26]…...

C++实现分布式网络通信框架RPC(3)--rpc调用端

目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中&#xff0c;我们已经大致实现了rpc服务端的各项功能代…...

51c自动驾驶~合集58

我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留&#xff0c;CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制&#xff08;CCA-Attention&#xff09;&#xff0c;…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

智能在线客服平台:数字化时代企业连接用户的 AI 中枢

随着互联网技术的飞速发展&#xff0c;消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁&#xff0c;不仅优化了客户体验&#xff0c;还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用&#xff0c;并…...

C# 类和继承(抽象类)

抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...

(转)什么是DockerCompose?它有什么作用?

一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用&#xff0c;而无需手动一个个创建和运行容器。 Compose文件是一个文本文件&#xff0c;通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...

css3笔记 (1) 自用

outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size&#xff1a;0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格&#xff…...

docker 部署发现spring.profiles.active 问题

报错&#xff1a; org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...

基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解

JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用&#xff0c;结合SQLite数据库实现联系人管理功能&#xff0c;并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能&#xff0c;同时可以最小化到系统…...