当前位置: 首页 > news >正文

分类预测 | MATLAB实现BWO-TCN-Attention数据分类预测

分类预测 | MATLAB实现BWO-TCN-Attention数据分类预测

目录

    • 分类预测 | MATLAB实现BWO-TCN-Attention数据分类预测
      • 分类效果
      • 基本描述
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述

4

基本描述

1.BWO-TCN-Attention数据分类预测程序;
2.无Attention适用于MATLAB 2022b版及以上版本;融合Attention要求Matlab2023版以上;
3.基于白鲸优化算法(BWO)、时间卷积神经网络(TCN)融合注意力机制的数据分类预测程序;
程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图;精确度、召回率、精确率、F1分数等评价指标。
4.算法优化学习率、卷积核大小、神经元个数,这3个关键参数,以测试集精度最高为目标函数。
5.适用领域:
适用于各种数据分类场景,如滚动轴承故障、变压器油气故障、电力系统输电线路故障区域、绝缘子、配网、电能质量扰动,等领域的识别、诊断和分类。
使用便捷:
直接使用EXCEL表格导入数据,无需大幅修改程序。内部有详细注释,易于理解。

程序设计

  • 完整程序和数据获取方式:私信博主回复MATLAB实现BWO-TCN-Attention数据分类预测
% The Whale Optimization Algorithm
function [Best_Cost,Best_pos,curve]=WOA(pop,Max_iter,lb,ub,dim,fobj)% initialize position vector and score for the leader
Best_pos=zeros(1,dim);
Best_Cost=inf; %change this to -inf for maximization problems%Initialize the positions of search agents
Positions=initialization(pop,dim,ub,lb);curve=zeros(1,Max_iter);t=0;% Loop counter% Main loop
while t<Max_iterfor i=1:size(Positions,1)% Return back the search agents that go beyond the boundaries of the search spaceFlag4ub=Positions(i,:)>ub;Flag4lb=Positions(i,:)<lb;Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;% Calculate objective function for each search agentfitness=fobj(Positions(i,:));% Update the leaderif fitness<Best_Cost % Change this to > for maximization problemBest_Cost=fitness; % Update alphaBest_pos=Positions(i,:);endenda=2-t*((2)/Max_iter); % a decreases linearly fron 2 to 0 in Eq. (2.3)% a2 linearly dicreases from -1 to -2 to calculate t in Eq. (3.12)a2=-1+t*((-1)/Max_iter);% Update the Position of search agents for i=1:size(Positions,1)r1=rand(); % r1 is a random number in [0,1]r2=rand(); % r2 is a random number in [0,1]A=2*a*r1-a;  % Eq. (2.3) in the paperC=2*r2;      % Eq. (2.4) in the paperb=1;               %  parameters in Eq. (2.5)l=(a2-1)*rand+1;   %  parameters in Eq. (2.5)p = rand();        % p in Eq. (2.6)for j=1:size(Positions,2)if p<0.5   if abs(A)>=1rand_leader_index = floor(pop*rand()+1);X_rand = Positions(rand_leader_index, :);D_X_rand=abs(C*X_rand(j)-Positions(i,j)); % Eq. (2.7)Positions(i,j)=X_rand(j)-A*D_X_rand;      % Eq. (2.8)elseif abs(A)<1D_Leader=abs(C*Best_pos(j)-Positions(i,j)); % Eq. (2.1)Positions(i,j)=Best_pos(j)-A*D_Leader;      % Eq. (2.2)endelseif p>=0.5distance2Leader=abs(Best_pos(j)-Positions(i,j));% Eq. (2.5)Positions(i,j)=distance2Leader*exp(b.*l).*cos(l.*2*pi)+Best_pos(j);endendendt=t+1;curve(t)=Best_Cost;[t Best_Cost]
end

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

相关文章:

分类预测 | MATLAB实现BWO-TCN-Attention数据分类预测

分类预测 | MATLAB实现BWO-TCN-Attention数据分类预测 目录 分类预测 | MATLAB实现BWO-TCN-Attention数据分类预测分类效果基本描述程序设计参考资料 分类效果 基本描述 1.BWO-TCN-Attention数据分类预测程序&#xff1b; 2.无Attention适用于MATLAB 2022b版及以上版本&#xf…...

6.链路追踪-Zipkin

链路追踪&#xff08;Distributed Tracing&#xff09;是一种用于监视分布式应用程序的技术&#xff0c;通过收集和展示分布式系统中不同组件之间的调用和交互情况&#xff0c;帮助开发人员和运维团队理解系统中的请求流程、性能瓶颈和异常情况。 1.Zipkin Zipkin 是一个开源的…...

基于ACF,AMDF算法的语音编码matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 .......................................................................... plotFlag …...

python 基础篇 day 1 初识变量和数据类型

文章目录 变量变量作用——用于存储和表示数据。变量命名规则命名法大驼峰小驼峰下划体n j i a x 通常作为临时变量使用 建议 变量种类全局变量&#xff08;Global Variables&#xff09;局部变量&#xff08;Local Variables&#xff09;静态变量&#xff08;Static Variables…...

Window下部署使用Stable Diffusion AI开源项目绘图

Window下部署使用Stable Diffusion AI开源项目绘图 前言前提条件相关介绍Stable Diffusion AI绘图下载项目环境要求环境下载运行项目打开网址&#xff0c;即可体验文字生成图像&#xff08;txt2img&#xff09;庐山瀑布 参考 本文里面的风景图&#xff0c;均由Stable Diffusion…...

【MySQL】好好学习一下InnoDB中的页

文章目录 一. 前言二. 从宏观层面看页三. 页的基本内容3.1 页的数据结构3.2 用户空间内的数据行结构3.3 页目录 四. 问题集4.1 索引 和 数据页 有什么区别4.2 页的大小是什么决定的4.3 页的大小对哪些情况有影响4.4 一般情况下说的链表有哪几个4.5 如果页的空间满了怎么办4.6 如…...

git开发常用命令

版本回退 soft&#xff1a;git reset --soft HEAD^ 将版本库回退一个版本&#xff0c;且这次提交的所有文件都移动到暂存区 mixed&#xff08;默认&#xff09;&#xff1a;git reset HEAD^ 将版本库回退一个版本&#xff0c;且这次提交的所有文件都移动到工作区&#xff0c;会…...

WEB APIs day5

一、window对象 BOM属于window对象 1.BOM&#xff08;浏览器对象模型&#xff09; bom里面包含着dom,只不过bom我们平时用得比较少&#xff0c;我们经常使用的是dom操作&#xff0c;因为我们页面中的这些标签都是在dom中取的&#xff0c;所以我们操作dom多一点。 window对象…...

html动态爱心代码【一】(附源码)

前言 七夕马上就要到了&#xff0c;为了帮助大家高效表白&#xff0c;下面再给大家带来了实用的HTML浪漫表白代码(附源码)背景音乐&#xff0c;可用于520&#xff0c;情人节&#xff0c;生日&#xff0c;表白等场景&#xff0c;可直接使用。 效果演示 文案修改 var loverNam…...

【仿写tomcat】六、解析xml文件配置端口、线程池核心参数

线程池改造 上一篇文章中我们用了Excutors创建了线程&#xff0c;这里我们将它改造成包含所有线程池核心参数的形式。 package com.tomcatServer.http;import java.util.concurrent.*;/*** 线程池跑龙套** author ez4sterben* date 2023/08/05*/ public class ThreadPool {pr…...

Android Studio 接入OpenCV最简单的例子 : 实现灰度图效果

1. 前言 上文 我们在Windows电脑上实现了人脸功能&#xff0c;接下来我们要把人脸识别的功能移植到Android上。 那么首先第一步&#xff0c;就是要创建一个Native的Android项目&#xff0c;并且配置好OpenGL&#xff0c;并能够调用成功。 这里我们使用的是openCV-4.8.0&#x…...

(1)、扩展SpringCache一站式解决缓存击穿,穿透,雪崩

1、问题描述 我们在使用SpringCache的@Cacheable注解时,发现并没有设置过期时间这个功能。 @Target({ElementType.TYPE, ElementType.METHOD}) @Retention(RetentionPolicy.RUNTIME) @I...

Rancher使用cert-manager安装报错解决

报错&#xff1a; rancher-rke-01:~/rke/rancher-helm/rancher # helm install rancher rancher-stable/rancher --namespace cattle-system --set hostnamewww.rancher.local Error: INSTALLATION FAILED: Internal error occurred: failed calling webhook "webhook…...

Harvard transformer NLP 模型 openNMT 简介入门

项目网址&#xff1a; OpenNMT - Open-Source Neural Machine Translation logo&#xff1a; 一&#xff0c;从应用的层面先跑通 Harvard transformer GitHub - harvardnlp/annotated-transformer: An annotated implementation of the Transformer paper. ​git clone https…...

【数据结构OJ题】用栈实现队列

原题链接&#xff1a;https://leetcode.cn/problems/implement-queue-using-stacks/ 目录 1. 题目描述 2. 思路分析 3. 代码实现 1. 题目描述 2. 思路分析 用两个栈实现&#xff0c;一个栈进行入队操作&#xff0c;另一个栈进行出队操作。 出队操作&#xff1a; 当出队的栈…...

通达信指标公式15:除权除息数据统计分析

#1.关于除权除息指标的介绍&#xff1a;本指标是小红牛原创指标之一&#xff0c;觉得有必要研究一下这个问题&#xff0c;所以就花时间整理一下这个指标相关内容&#xff0c;大家可以在本源码基础上&#xff0c;进一步优化自己的思路。本指标为通达信幅图指标&#xff0c;可以做…...

day-27 代码随想录算法训练营(19)回溯part03

39.组合总和 分析&#xff1a;同一个数可以选多次&#xff0c;但是不能有重复的答案&#xff1b; 思路&#xff1a;横向遍历&#xff0c;纵向递归&#xff08;不同的是递归的时候不需要跳到下一个位置&#xff0c;因为同一个数可以选多次&#xff09; class Solution { publ…...

CSDN编程题-每日一练(2023-08-22)

CSDN编程题-每日一练(2023-08-22) 一、题目名称:最长递增区间二、题目名称:K树三、题目名称:小Q的价值无向图一、题目名称:最长递增区间 时间限制:1000ms内存限制:256M 题目描述: 给一个无序数组,求最长递增的区间长度。如:[5,2,3,8,1,9] 最长区间 2,3,8 长度为 3。…...

使用 KubeBlocks 为 K8s 提供稳如老狗的数据库服务

原文链接&#xff1a;https://forum.laf.run/d/994 大家好&#xff01;今天这篇文章主要向大家介绍 Sealos 的数据库服务。在 Sealos 上数据库后端服务由 KubeBlocks 提供&#xff0c;为用户的数据库应用保驾护航。无论你是在公有云还是本地环境中使用&#xff0c;Sealos 都能为…...

SFL212B-10-21-15、SFL212B-20-21-40喷嘴挡板伺服阀

SFL212B-05-21-10、SFL212B-10-21-15、SFL212B-20-21-40、SFL212-05-32-10、SFL212-10-32-15、SFL212-20-32-40、SFL212A-05-21-10、SFL212A-10-21-15、SFL212A-20-21-40喷嘴挡板力反馈伺服阀&#xff0c;外置伺服放大器&#xff0c;四通&#xff0c;带阀芯阀套的两级伺服阀&am…...

浅谈 React Hooks

React Hooks 是 React 16.8 引入的一组 API&#xff0c;用于在函数组件中使用 state 和其他 React 特性&#xff08;例如生命周期方法、context 等&#xff09;。Hooks 通过简洁的函数接口&#xff0c;解决了状态与 UI 的高度解耦&#xff0c;通过函数式编程范式实现更灵活 Rea…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析

1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具&#xff0c;该工具基于TUN接口实现其功能&#xff0c;利用反向TCP/TLS连接建立一条隐蔽的通信信道&#xff0c;支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式&#xff0c;适应复杂网…...

脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)

一、数据处理与分析实战 &#xff08;一&#xff09;实时滤波与参数调整 基础滤波操作 60Hz 工频滤波&#xff1a;勾选界面右侧 “60Hz” 复选框&#xff0c;可有效抑制电网干扰&#xff08;适用于北美地区&#xff0c;欧洲用户可调整为 50Hz&#xff09;。 平滑处理&…...

linux 错误码总结

1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...

python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)

更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...

AspectJ 在 Android 中的完整使用指南

一、环境配置&#xff08;Gradle 7.0 适配&#xff09; 1. 项目级 build.gradle // 注意&#xff1a;沪江插件已停更&#xff0c;推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...

springboot整合VUE之在线教育管理系统简介

可以学习到的技能 学会常用技术栈的使用 独立开发项目 学会前端的开发流程 学会后端的开发流程 学会数据库的设计 学会前后端接口调用方式 学会多模块之间的关联 学会数据的处理 适用人群 在校学生&#xff0c;小白用户&#xff0c;想学习知识的 有点基础&#xff0c;想要通过项…...

A2A JS SDK 完整教程:快速入门指南

目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库&#xff…...

RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill

视觉语言模型&#xff08;Vision-Language Models, VLMs&#xff09;&#xff0c;为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展&#xff0c;机器人仍难以胜任复杂的长时程任务&#xff08;如家具装配&#xff09;&#xff0c;主要受限于人…...

(一)单例模式

一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...