概率论与数理统计:第七章:参数估计 第八章:假设检验
文章目录
- Ch7. 参数估计
- 7.1 点估计
- 1.矩估计
- 2.最大似然估计
- (1)离散型
- (2)连续型
- 7.2 评价估计量优良性的标准
- (1)无偏性 (无偏估计)
- (2)有效性
- (3)一致性
- 7.3 区间估计
- 1.置信区间、置信度
- 2.求μ的置信区间
- Ch8. 假设检验
- 1.拒绝域α、接受域1-α、H₀原假设、H₁备择假设
- 2.双边检验、单边检验
- 3.第一类错误、第二类错误
Ch7. 参数估计
7.1 点估计
1.矩估计
p i ( θ ) p_i(θ) pi(θ)、 f ( x i , θ ) f(x_i,θ) f(xi,θ),用矩估计法来估计未知参数θ
{ X ˉ = E ( X ) 1 n ∑ i = 1 n X i 2 = E ( X 2 ) \left\{\begin{aligned} \bar{X} = & E(X) \\ \dfrac{1}{n}\sum\limits_{i=1}^nX_i^2 = & E(X^2) \end{aligned}\right. ⎩ ⎨ ⎧Xˉ=n1i=1∑nXi2=E(X)E(X2)
注意:
1.矩估计量:大写
矩估计值:小写
2.离散型和连续型随机变量
求矩估计的区别,只在于求期望的方法不一样。
而求最大似然估计,则是似然函数的求法不一样。
例题1:23李林六套卷(三)22.(2)
若θ为未知参数,利用总体Z的样本值 − 2 , 0 , 0 , 0 , 2 , 2 -2,0,0,0,2,2 −2,0,0,0,2,2求 θ θ θ的矩估计值。且Z的分布律为
Z Z Z | − 2 -2 −2 | 0 0 0 | 2 2 2 |
---|---|---|---|
P k P_k Pk | θ θ θ | 1 − 2 θ 1-2θ 1−2θ | θ θ θ |
答案:
例题2:09年23(1)
分析:
①矩估计,求期望
②最大似然估计,求似然函数L(θ),取对数lnL(θ),令导数为0即令 d l n L ( θ ) d θ = 0 \frac{\rm dlnL(θ)}{\rm dθ}=0 dθdlnL(θ)=0
答案:
例题3:13年23.(难度:易)
2.最大似然估计
最大似然估计求的是,θ为多少时,使得L(θ)最大
(1)离散型
求离散型随机变量的最大似然估计量:
离散型的似然函数 L ( θ ) = ∏ i = 1 n p ( x i , θ ) L(θ)=\prod\limits_{i=1}^n{p(x_i,θ)} L(θ)=i=1∏np(xi,θ) = p ( x 1 , θ ) ⋅ p ( x 2 , θ ) ⋅ . . . ⋅ p ( x n , θ ) =p(x_1,θ)·p(x_2,θ)·...·p(x_n,θ) =p(x1,θ)⋅p(x2,θ)⋅...⋅p(xn,θ)
x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2,...,xn为离散型样本值,根据样本来确定是哪些概率相乘。
(2)连续型
求连续型随机变量的最大似然估计量,连续型的似然函数L(θ)
L ( θ ) = L ( x 1 , x 2 , . . . , x n ; θ ) = ∏ i = 1 n f ( x i ; θ ) ( x i > 0 , i = 1 , 2 , . . . n ) L(θ) = L(x_1,x_2,...,x_n;θ) = \prod_{i=1}^n f(x_i;θ) \qquad (x_i>0,i=1,2,...n) L(θ)=L(x1,x2,...,xn;θ)=i=1∏nf(xi;θ)(xi>0,i=1,2,...n)
求最大似然估计量/值
①求似然函数 L(θ) (xi>0/θ,i=1,2,…n)
②取对数,求 lnL(θ)
③令 d l n L ( θ ) d θ = 0 \frac{\rm d lnL(θ)}{\rm dθ} = 0 dθdlnL(θ)=0,求出 θ ^ \hat{θ} θ^
④最大似然估计值为xi,最大似然估计量为Xi
若 d l n L ( θ ) d θ ≠ 0 \frac{\rm d lnL(θ)}{\rm dθ} ≠ 0 dθdlnL(θ)=0
有的题,在③这一步发现 d l n L ( θ ) d θ ≠ 0 \frac{\rm d lnL(θ)}{\rm dθ} ≠ 0 dθdlnL(θ)=0,为>0就说明 L(θ)为增函数。见2000年21.
例题1:2002年20. 离散型的参数估计
答案:
例题2:19年23(2)
分析:
求σ2的最大似然函数:
①求似然函数L(σ2)
②取对数,lnL(σ2)
③令 d l n L ( σ 2 ) d σ 2 = 0 \frac{\rm d lnL(σ^2)}{\rm dσ^2} = 0 dσ2dlnL(σ2)=0
答案:
σ2的最大似然估计值为 σ ^ 2 = 1 n ∑ i = 1 n ( x i − μ ) 2 \hat{σ}^2=\dfrac{1}{n}\sum\limits_{i=1}^n(x_i-μ)^2 σ^2=n1i=1∑n(xi−μ)2
σ2的最大似然估计量为 σ ^ 2 = 1 n ∑ i = 1 n ( X i − μ ) 2 \hat{σ}^2=\dfrac{1}{n}\sum\limits_{i=1}^n(X_i-μ)^2 σ^2=n1i=1∑n(Xi−μ)2
例题3:18年23(2)
例题4:2000年21.
分析: d l n L ( θ ) d θ = 2 n > 0 \frac{\rm d lnL(θ)}{\rm dθ} =2n >0 dθdlnL(θ)=2n>0,∴lnL(θ)为关于θ的增函数
∴θ的最大似然估计值为 θ ^ \hat{θ} θ^=min1≤i≤n{xi}
例题5:09年23(2)
习题1:23李林四(三)16.
分析:
答案: X ˉ \bar{X} Xˉ
习题2:23李林四(二)16.
分析:∵|x|≤θ ∴θ的最大似然估计量为 θ ^ \hat{θ} θ^=max{|X₁|,|X₂|,…,|Xn|}
答案:max{|X₁|,|X₂|,…,|Xn|}
习题3:23李林六套卷(六)16. 二维随机变量求θ的最大似然估计
分析:
答案: 1 2 n ∑ i = 1 n ( X i + Y i ) \dfrac{1}{2n}\sum\limits_{i=1}^n(X_i+Y_i) 2n1i=1∑n(Xi+Yi)
习题4:22年22. 两个随机变量,求最大似然估计量
答案:
7.2 评价估计量优良性的标准
(1)无偏性 (无偏估计)
若参数θ的估计量 θ ^ = θ ^ ( X 1 , X 2 , . . . , X n ) \hat{θ}=\hat{θ}(X_1,X_2,...,X_n) θ^=θ^(X1,X2,...,Xn)对一切n及θ∈I,有 E ( θ ^ ) = θ E(\hat{θ})=θ E(θ^)=θ,则称 θ ^ \hat{θ} θ^为 θ θ θ的无偏估计量
即若 θ ^ \hat{θ} θ^是θ的无偏估计量,则 E ( θ ^ ) = θ E(\hat{θ})=θ E(θ^)=θ
E ( X ˉ ) = μ = E ( X ) , E ( S 2 ) = σ 2 = D ( X ) E(\bar X)=μ=E(X),E(S^2)=σ²=D(X) E(Xˉ)=μ=E(X),E(S2)=σ2=D(X)
(2)有效性
有效性(最小方差性):都是无偏估计量的情况下,方差小的更有效
(3)一致性
一致性(相合性): θ ^ → P θ \hat{θ}\xrightarrow{P}θ θ^Pθ,依概率收敛
例题1:14年14.
分析:
答案: 2 5 n \dfrac{2}{5n} 5n2
例题2:09年14. 无偏估计、二项分布的数字特征
分析: θ ^ \hat{θ} θ^是θ的无偏估计量: E ( θ ^ ) = θ E(\hat{θ})=θ E(θ^)=θ。 E ( X ˉ ) = μ = E ( X ) , E ( S 2 ) = σ 2 = D ( X ) E(\bar X)=μ=E(X),E(S^2)=σ²=D(X) E(Xˉ)=μ=E(X),E(S2)=σ2=D(X)
则 E ( X ˉ + k S 2 ) = n p 2 E(\bar X+kS^2)=np^2 E(Xˉ+kS2)=np2,即 E ( X ˉ ) + k E ( S 2 ) = n p + k n p ( 1 − p ) = n p 2 E(\bar X)+kE(S^2)=np+knp(1-p)=np^2 E(Xˉ)+kE(S2)=np+knp(1−p)=np2,化简得 k=-1
答案:-1
例题3:16年23(2)
例题4:12年23(3)
7.3 区间估计
1.置信区间、置信度
P { θ 1 < θ < θ 2 } = 1 − α P\{θ_1<θ<θ_2\}=1-α P{θ1<θ<θ2}=1−α
1 − α 1-α 1−α称为置信度(置信水平), α α α称为显著性水平
区间 ( θ 1 , θ 2 ) (θ_1,θ_2) (θ1,θ2)称为参数θ的置信度为1-α的置信区间。 θ 1 θ₁ θ1和 θ 2 θ₂ θ2分别称为置信度为 1 − α 1-α 1−α的置信区间的置信下限和置信上限;
2.求μ的置信区间
正态总体均值μ的置信区间(置信水平为1-α)
待估参数 | 其他参数 | 枢轴量的分布 | 置信区间 |
---|---|---|---|
μ | σ²已知 | Z = X ‾ − μ σ / n ∼ N ( 0 , 1 ) Z=\dfrac{\overline{X}-μ}{σ/\sqrt{n}}\sim N(0,1) Z=σ/nX−μ∼N(0,1) | ( X ‾ − Z α 2 σ n , X ‾ + Z α 2 σ n ) (\overline{X}-Z_{\frac{α}{2}}\dfrac{σ}{\sqrt{n}},\overline{X}+Z_{\frac{α}{2}}\dfrac{σ}{\sqrt{n}}) (X−Z2αnσ,X+Z2αnσ) |
μ | σ²未知 | t = X ‾ − μ S / n ∼ t ( n − 1 ) t=\dfrac{\overline{X}-μ}{S/\sqrt{n}}\sim t(n-1) t=S/nX−μ∼t(n−1) | ( X ‾ − t α 2 ( n − 1 ) S n , X ‾ + t α 2 ( n − 1 ) S n ) (\overline{X}-t_{\frac{α}{2}}(n-1)\dfrac{S}{\sqrt{n}},\overline{X}+t_{\frac{α}{2}}(n-1)\dfrac{S}{\sqrt{n}}) (X−t2α(n−1)nS,X+t2α(n−1)nS) |
例题1:16年14. 置信区间、置信上限
分析:置信区间是以 X ˉ \bar{X} Xˉ为中心对称的
X ˉ = 9.5 \bar{X}=9.5 Xˉ=9.5, X ˉ \bar{X} Xˉ到置信下限是1.3,则 X ˉ \bar{X} Xˉ到置信上限也是1.3
答案: ( 8.2 , 10.8 ) (8.2,10.8) (8.2,10.8)
例题2:03年6.
分析:
答案: ( 39.51 , 40.49 ) (39.51,40.49) (39.51,40.49)
Ch8. 假设检验
1.拒绝域α、接受域1-α、H₀原假设、H₁备择假设
检验水平(显著性水平)α,即为拒绝域面积。α越小,接受域越大。
例题1:18年8. 假设检验
分析:α为拒绝域。若拒绝,说明落在α内。若接受,说明落在α外。
答案:D
2.双边检验、单边检验
①接受域看H₀,拒绝域看H₁
②易错点:求未知数时,要代入原假设H₀中μ的值 μ 0 μ_0 μ0
(1)双边检验:
①H₀:μ=μ₀,H₁:μ≠μ₀
②α/2
(2)单边检验:
①H₀:μ≥或≤μ₀,H₁:μ>或<μ₀
②α
例题1:
分析:
答案:求出拒绝域,得 x ˉ = 10 \bar{x}=10 xˉ=10落入拒绝域,拒绝原假设H₀
3.第一类错误、第二类错误
1.犯第一类错误(弃真):H₀为真的情况下,拒绝了H₀。
犯第一类错误的概率: α = P { 拒绝了 H 0 ∣ H 0 为真 } = P { 落在拒绝域 } α=P\{拒绝了H_0|H_0为真 \}=P\{落在拒绝域\} α=P{拒绝了H0∣H0为真}=P{落在拒绝域}
2.犯第二类错误(取伪):H₀为假的情况下,接受了H₀。
犯第二类错误的概率: β = P { 接受了 H 0 ∣ H 0 为假 } = P { 落在接受域 } β=P\{接受了H_0|H_0为假\}=P\{落在接受域\} β=P{接受了H0∣H0为假}=P{落在接受域}
常用性质:
① P { x > a } = 1 − P { x ≤ a } P\{x>a\}=1-P\{x≤a\} P{x>a}=1−P{x≤a}
② Φ ( − x ) = 1 − Φ ( x ) Φ(-x)=1-Φ(x) Φ(−x)=1−Φ(x)
例题1:23李林六套卷(四)10. 犯第一类错误
分析:
答案:C
例题2:21年10. 犯第二类错误
分析:
答案:B
例题3:
分析:
犯第一类错误的概率α = P{H0为真,落在拒绝域}
犯第二类错误的概率β=P{H1为真,落在接受域}
答案:
相关文章:
概率论与数理统计:第七章:参数估计 第八章:假设检验
文章目录 Ch7. 参数估计7.1 点估计1.矩估计2.最大似然估计(1)离散型(2)连续型 7.2 评价估计量优良性的标准(1)无偏性 (无偏估计)(2)有效性(3)一致性 7.3 区间估计1.置信区间、置信度2.求μ的置信区间 Ch8. 假设检验1.拒绝域α、接受域1-α、H₀原假设、H₁备择假设2.双边检验、…...
【Kubernetes】Kubernetes的监控工具Promethues
Prometheus 一、Prometheus 概念1. Prometheus 概述2. Prometheus 的监控数据3. Prometheus 的特点4. Prometheus 和 zabbix 区别5. Prometheus 的生态组件5.1 Prometheus server5.2 Client Library5.3 Exporters5.4 Service Discovery5.5 Alertmanager5.6 Pushgateway5.7 Graf…...
【linux】2 Linux编译器-gcc/g++和Linux调试器-gdb
文章目录 一、Linux编译器-gcc/g使用1.1 背景知识1.2 gcc如何完成1.3 函数库1.4 gcc选项 二、linux调试器-gdb使用2.1 背景2.2 开始使用 总结 ヾ(๑╹◡╹)ノ" 人总要为过去的懒惰而付出代价ヾ(๑╹◡╹)ノ" 一、Linux编译器-gcc/g使用 1.1 背景…...
【力扣每日一题】2023.8.17 切披萨的方案数
目录 题目: 示例: 分析: 代码: 题目: 示例: 分析: 题目给我们一个二维数组来表示一个披萨,其中‘A’表示披萨上的苹果。 让我们切k-1刀,把披萨切成 k 份࿰…...
Linux调试器-gdb使用
1. 背景 程序的发布方式有两种, debug 模式和 release 模式 Linux gcc/g 出来的二进制程序,默认是 release 模式 要使用 gdb 调试,必须在源代码生成二进制程序的时候 , 加上 - g 选项 2. 开始使用 gdb binFile 退出: ct…...
linux安装mysql错误处理
linux下mysql的安装与使用 linux安装mysql可有三种方式: 1、yum安装 2、源码安装 3、glibc安装 安装wget yum install -y wget https://blog.csdn.net/darendu/article/details/89874564?utm_sourceapp Linux上error while loading shared libraries问题解决方法…...
Matlab绘制灰度直方图
直方图是根据灰图像绘制的,而不是彩色图像通。查看图像直方图时候,需要先确定图片是否为灰度图,使用MATLAB2019查看图片是否是灰度图片,在读取图片后在MATLAB界面的工作区会显示读取的图像矩阵,如果是,那么…...
http学习笔记1
图解HTTP学习笔记 1.2 HTTP的诞生 CERN(欧洲核子研究组织)的蒂姆 • 伯纳斯 - 李(Tim BernersLee)博士提出了一种能让远隔两地的研究者们共享知识的设想。最初设想的基本理念是:借助多文档之间相互关联形成的超文本&am…...
PDF文件分割合并
PDF文件的分割和合并代码。 from PyPDF2 import PdfFileReader,PdfFileWriterdef pdf_split(filename,outputname)pr PdfFileReader(filename)for page in range(p.getNumPages()):pw PdfFileWriter()pw.addPage(pr.getPage(page))with open(f{outputname}{page}.pdf,wb) as…...
物联网无线通信方式总结
本文主要内容(一些物联网无线通信方式) 本文将介绍一些物联网无线通信方式的技术特点、底层调制方式和主要应用场景物联网无线通信方式是指利用无线技术实现物体之间的信息交换和网络连接的方式物联网无线通信方式的选择需要考虑多种因素,如传输距离、功耗、数据速…...
计算机竞赛 python的搜索引擎系统设计与实现
0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 python的搜索引擎系统设计与实现 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分工作量:5分创新点:3分 该项目较为新颖ÿ…...
ue5 场景搭建和灯光照明参考
https://www.youtube.com/watch?vOCgn40aWVuU https://www.youtube.com/watch?vIGLujClhL5U...
Mycat跨分片Join指南
前言Mycat目前版本支持跨分片的join,主要实现的方式有四种。 全局表 ER分片 HBT ShareJoin ShareJoin在开发版中支持,前面三种方式1.3.0.1支持 2.ShareJoin ShareJoin是一个简单的跨分片Join,基于HBT的方式实现。 目前支持2个表的join,原理就是解析SQL语句,拆分成单表的…...
网络:RIP协议
1. RIP协议原理介绍 RIP是一种比较简单的内部网关协议(IGP协议),RIP基于距离矢量的贝尔曼-福特算法(Bellman - Ford)来计算到达目的网络的最佳路径。最初的RIP协议开发时间较早,所以在带宽、配置和管理方面的要求也较低。 路由器运…...
如何优化因为高亮造成的大文本(大字段)检索缓慢问题
首先还是说一下背景,工作中用到了 elasticsearch 的检索以及高亮展示,但是索引中的content字段是读取的大文本内容,所以后果就是索引的单个字段很大,造成单独检索请求的时候速度还可以,但是加入高亮之后检索请求的耗时…...
HTML <table> 标签
实例 一个简单的 HTML 表格,包含两行两列: <table border="1"><tr><th>Month</th><th>Savings</th></tr><tr><td>January</td><td>$100</td></tr> </table>定义和用法 &l…...
ubuntu pdf阅读器okular
sudo apt-get install okular安装完毕后,使用如下命令浏览pdf文档 okular xxx.pdf...
根据源码,模拟实现 RabbitMQ - 虚拟主机 + Consume设计 (7)
目录 一、虚拟主机 Consume设计 1.1、承接问题 1.2、具体实现 1.2.1、消费者订阅消息实现思路 1.2.2、消费者描述自己执行任务方式实现思路 1.2.3、消息推送给消费者实现思路 1.2.4、消息确认 一、虚拟主机 Consume设计 1.1、承接问题 前面已经实现了虚拟主机大部分功…...
docker中bridge、host、container、none四种网络模式简介
目录 一.bridge模式 1.简介 2.演示 (1)运行两个容器,不指定网络模式情况下默认是bridge模式 (2)在主机中自动生成了两个veth设备 (3)查看两个容器的IP地址 (4)可以…...
排序算法之详解冒泡排序
引入 冒泡排序顾名思义,就是像冒泡一样,泡泡在水里慢慢升上来,由小变大。虽然冒泡排序和冒泡并不完全一样,但却可以帮助我们理解冒泡排序。 思路 一组无序的数组,要求我们从小到大排列 我们可以先将最大的元素放在数组…...
el-upload组件调用后端接口上传文件实践
要点说明: 使用:http-request覆盖默认的上传行为,可以添加除文件外的其他参数,注意此时仍需保留action属性,action可以传个空串给http-request属性绑定的函数,函数入参必须为param调用接口请求,注意 heade…...
深度学习-实验1
一、Pytorch基本操作考察(平台课专业课) 使用𝐓𝐞𝐧𝐬𝐨𝐫初始化一个 𝟏𝟑的矩阵 𝑴和一个 𝟐𝟏的矩阵 𝑵&am…...
互联网医院开发|医院叫号系统提升就医效率
在这个数字化时代,互联网医院不仅改变了我们的生活方式,也深刻影响着医疗行业。医院叫号系统应运而生,它能够有效解决患者管理和服务方面的难题。不再浪费大量时间在排队上,避免患者错过重要信息。同时,医护工作效率得…...
手写 Mybatis-plus 基础架构(工厂模式+ Jdk 动态代理统一生成代理 Mapper)
这里写目录标题 前言温馨提示手把手带你解析 MapperScan 源码手把手带你解析 MapperScan 源码细节剖析工厂模式Jdk 代理手撕脚手架,复刻 BeanDefinitionRegistryPostProcessor手撕 FactoryBean代理 Mapper 在 Spring 源码中的生成流程手撕 MapperProxyFactory手撕增…...
【C++11算法】iota算法
文章目录 前言一、iota函数1.1 iota是什么?1.2 函数原型1.3 参数和返回值1.4 示例代码1.5 示例代码21.6 示例代码3 总结 前言 C标准库提供了丰富的算法,其中之一就是iota算法。iota算法用于填充一个区间,以递增的方式给每个元素赋予一个值。…...
付费加密音乐格式转换Mp3、Flac工具
一、工具介绍 这是一款免费的将付费加密音乐等多种格式转换Mp3 Flac工具,现在大部分云音乐公司,比如QQ音乐、酷我音乐、酷狗音乐、网易云音乐、虾米音乐(RIP🙏)等,都推出了自己专属的云音乐格式,这些格式一般只能在制定的播放器里播放,其它的播放软件并不支持,在很多情…...
React前端开发架构:构建现代响应式用户界面
在当今的Web应用开发中,React已经成为最受欢迎的前端框架之一。它的出色性能、灵活性和组件化开发模式,使得它成为构建现代响应式用户界面的理想选择。在这篇文章中,我们将探讨React前端开发架构的核心概念和最佳实践,以帮助您构建…...
Azure Bastion的简单使用
什么是Azure Bastion Azure Bastion 是一个提供安全远程连接到 Azure 虚拟机(VM)的服务。传统上,访问 VM 需要使用公共 IP 或者设立 VPN 连接,这可能存在一些安全风险。Azure Bastion 提供了一种更安全的方式,它是一个…...
深入理解高并发编程 - 深度解析ScheduledThreadPoolExecutor
ScheduledThreadPoolExecutor 继承自 ThreadPoolExecutor 并实现了 ScheduledExecutorService 接口,这使得它可以同时充当线程池和定时任务调度器。 构造方法 public ScheduledThreadPoolExecutor(int corePoolSize) {super(corePoolSize, Integer.MAX_VALUE, 0, …...
Android---- 一个完整的小项目(消防app)
前言: 针对不同群体的需求,想着应该拓展写方向。医疗app很受大家喜欢,就打算顺手写个消防app,里面基础框架还是挺简洁 规整的。登陆注册和本地数据库写的便于大家理解。是广大学子的毕设首选啊! 此app主要为了传递 消防…...
wordpress多重筛选并排序/百度搜索次数统计
自动化测试工具 JMeter https://jmeter.apache.org/download_jmeter.cgi...
班级网站建设方案/谷歌seo是什么意思
一、什么是电路原理图 电路原理图是使用图形符号按照一定的顺序排列,详细表示电路、设备的基本连接关系,而不考虑实际位置、物理形式的一种简图,也常常简称电路图或者原理图。 1、原理图基本元素 电路原理图是由原理图符号、符号之间的电气连…...
希腊网站 后缀/淘宝流量网站
先恒流充电至4.2V,再恒压4.2V 18650锂电池,很多人刚开始的时候都会惊讶为什么会用这一串数字来命名。18650是分别代表着直径和高度的圆柱体电池。现在多用于称单颗移动照明的锂电池等。 18650锂电池的标称电压同样是3.7V,最高限制电压4.2V。常用在强光手…...
网站改版 价格/关注公众号一单一结兼职
近日,国航向邀约客户发送了一条短信,内容如下:尊敬的会员,凤凰知音特邀您参加贵宾会员保级活动。银卡4次/金卡6次轻松飞回原级别。原本我以为这个特邀参加有严格的限定标准,直到我今早上才看到昨晚上我也收到了国航的这…...
做网站一般有几个关键词/电商网站开发
首先还是来看看PWM中断寄存器,及其含义。 PWM模块带有标志位 PWMF (PWMCON0.5) 用来标志当前 PWM周期完成状态。PWMF通过软件清零。 别忘记了使能PWM中断,以及开启总中断。 再来看看PWM中断的中断号。 就是这么简单,就是这么直接…...
坪山做网站的公司/在哪里查关键词排名
【参考资料】 【1】https://github.com/TowardsNorth/yolo_v1_tensorflow_guiyu/blob/master/yolo/yolo_net.py 【2】https://www.bilibili.com/video/BV15w411Z7LG?p4 1 网络结构 2 输出向量 2.1 输出概述 ● 在yolo v1中将图像归一化后,分拆成 7 * 7 个单元格g…...