当前位置: 首页 > news >正文

概率论与数理统计:第七章:参数估计 第八章:假设检验

文章目录

  • Ch7. 参数估计
    • 7.1 点估计
      • 1.矩估计
      • 2.最大似然估计
        • (1)离散型
        • (2)连续型
    • 7.2 评价估计量优良性的标准
      • (1)无偏性 (无偏估计)
      • (2)有效性
      • (3)一致性
    • 7.3 区间估计
      • 1.置信区间、置信度
      • 2.求μ的置信区间
  • Ch8. 假设检验
    • 1.拒绝域α、接受域1-α、H₀原假设、H₁备择假设
    • 2.双边检验、单边检验
    • 3.第一类错误、第二类错误

Ch7. 参数估计

7.1 点估计

1.矩估计

p i ( θ ) p_i(θ) pi(θ) f ( x i , θ ) f(x_i,θ) f(xi,θ),用矩估计法来估计未知参数θ

{ X ˉ = E ( X ) 1 n ∑ i = 1 n X i 2 = E ( X 2 ) \left\{\begin{aligned} \bar{X} = & E(X) \\ \dfrac{1}{n}\sum\limits_{i=1}^nX_i^2 = & E(X^2) \end{aligned}\right. Xˉ=n1i=1nXi2=E(X)E(X2)

注意:
1.矩估计量:大写
矩估计值:小写

2.离散型和连续型随机变量
求矩估计的区别,只在于求期望的方法不一样。
而求最大似然估计,则是似然函数的求法不一样。



例题1:23李林六套卷(三)22.(2)
若θ为未知参数,利用总体Z的样本值 − 2 , 0 , 0 , 0 , 2 , 2 -2,0,0,0,2,2 2,0,0,0,2,2 θ θ θ的矩估计值。且Z的分布律为

Z Z Z − 2 -2 2 0 0 0 2 2 2
P k P_k Pk θ θ θ 1 − 2 θ 1-2θ 12θ θ θ θ

答案:
在这里插入图片描述


例题2:09年23(1)
在这里插入图片描述

分析:
①矩估计,求期望
②最大似然估计,求似然函数L(θ),取对数lnL(θ),令导数为0即令 d l n L ( θ ) d θ = 0 \frac{\rm dlnL(θ)}{\rm dθ}=0 dθdlnL(θ)=0

答案:
在这里插入图片描述


例题3:13年23.(难度:易)
在这里插入图片描述




2.最大似然估计

最大似然估计求的是,θ为多少时,使得L(θ)最大


(1)离散型

求离散型随机变量的最大似然估计量:
离散型的似然函数 L ( θ ) = ∏ i = 1 n p ( x i , θ ) L(θ)=\prod\limits_{i=1}^n{p(x_i,θ)} L(θ)=i=1np(xi,θ) = p ( x 1 , θ ) ⋅ p ( x 2 , θ ) ⋅ . . . ⋅ p ( x n , θ ) =p(x_1,θ)·p(x_2,θ)·...·p(x_n,θ) =p(x1,θ)p(x2,θ)...p(xn,θ)

x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2,...,xn为离散型样本值,根据样本来确定是哪些概率相乘。


(2)连续型

求连续型随机变量的最大似然估计量,连续型的似然函数L(θ)
L ( θ ) = L ( x 1 , x 2 , . . . , x n ; θ ) = ∏ i = 1 n f ( x i ; θ ) ( x i > 0 , i = 1 , 2 , . . . n ) L(θ) = L(x_1,x_2,...,x_n;θ) = \prod_{i=1}^n f(x_i;θ) \qquad (x_i>0,i=1,2,...n) L(θ)=L(x1,x2,...,xn;θ)=i=1nf(xi;θ)(xi>0,i=1,2,...n)

求最大似然估计量/值
①求似然函数 L(θ)   (xi>0/θ,i=1,2,…n)
②取对数,求 lnL(θ)
③令 d l n L ( θ ) d θ = 0 \frac{\rm d lnL(θ)}{\rm dθ} = 0 dθdlnL(θ)=0,求出 θ ^ \hat{θ} θ^
最大似然估计值为xi,最大似然估计量为Xi


d l n L ( θ ) d θ ≠ 0 \frac{\rm d lnL(θ)}{\rm dθ} ≠ 0 dθdlnL(θ)=0
有的题,在③这一步发现 d l n L ( θ ) d θ ≠ 0 \frac{\rm d lnL(θ)}{\rm dθ} ≠ 0 dθdlnL(θ)=0,为>0就说明 L(θ)为增函数。见2000年21.



例题1:2002年20.   离散型的参数估计
在这里插入图片描述

答案:


例题2:19年23(2)
在这里插入图片描述

分析:
求σ2的最大似然函数:
①求似然函数L(σ2)
②取对数,lnL(σ2)
③令 d l n L ( σ 2 ) d σ 2 = 0 \frac{\rm d lnL(σ^2)}{\rm dσ^2} = 0 dσ2dlnL(σ2)=0


答案:
σ2的最大似然估计值为 σ ^ 2 = 1 n ∑ i = 1 n ( x i − μ ) 2 \hat{σ}^2=\dfrac{1}{n}\sum\limits_{i=1}^n(x_i-μ)^2 σ^2=n1i=1n(xiμ)2
σ2的最大似然估计量为 σ ^ 2 = 1 n ∑ i = 1 n ( X i − μ ) 2 \hat{σ}^2=\dfrac{1}{n}\sum\limits_{i=1}^n(X_i-μ)^2 σ^2=n1i=1n(Xiμ)2


例题3:18年23(2)
在这里插入图片描述


例题4:2000年21.
在这里插入图片描述

分析: d l n L ( θ ) d θ = 2 n > 0 \frac{\rm d lnL(θ)}{\rm dθ} =2n >0 dθdlnL(θ)=2n>0,∴lnL(θ)为关于θ的增函数
∴θ的最大似然估计值为 θ ^ \hat{θ} θ^=min1≤i≤n{xi}


例题5:09年23(2)


习题1:23李林四(三)16.
在这里插入图片描述
在这里插入图片描述

分析:
在这里插入图片描述
答案: X ˉ \bar{X} Xˉ


习题2:23李林四(二)16.
在这里插入图片描述

分析:∵|x|≤θ ∴θ的最大似然估计量为 θ ^ \hat{θ} θ^=max{|X₁|,|X₂|,…,|Xn|}

答案:max{|X₁|,|X₂|,…,|Xn|}


习题3:23李林六套卷(六)16.   二维随机变量求θ的最大似然估计
在这里插入图片描述
在这里插入图片描述

分析:

答案: 1 2 n ∑ i = 1 n ( X i + Y i ) \dfrac{1}{2n}\sum\limits_{i=1}^n(X_i+Y_i) 2n1i=1n(Xi+Yi)


习题4:22年22.   两个随机变量,求最大似然估计量
在这里插入图片描述

答案:
在这里插入图片描述




7.2 评价估计量优良性的标准

(1)无偏性 (无偏估计)

若参数θ的估计量 θ ^ = θ ^ ( X 1 , X 2 , . . . , X n ) \hat{θ}=\hat{θ}(X_1,X_2,...,X_n) θ^=θ^(X1,X2,...,Xn)对一切n及θ∈I,有 E ( θ ^ ) = θ E(\hat{θ})=θ E(θ^)=θ,则称 θ ^ \hat{θ} θ^ θ θ θ的无偏估计量

即若 θ ^ \hat{θ} θ^是θ的无偏估计量,则 E ( θ ^ ) = θ E(\hat{θ})=θ E(θ^)=θ

E ( X ˉ ) = μ = E ( X ) , E ( S 2 ) = σ 2 = D ( X ) E(\bar X)=μ=E(X),E(S^2)=σ²=D(X) E(Xˉ)=μ=E(X)E(S2)=σ2=D(X)


(2)有效性

有效性(最小方差性):都是无偏估计量的情况下,方差小的更有效
在这里插入图片描述


(3)一致性

一致性(相合性): θ ^ → P θ \hat{θ}\xrightarrow{P}θ θ^P θ,依概率收敛
在这里插入图片描述



例题1:14年14.
在这里插入图片描述

分析:
在这里插入图片描述

答案: 2 5 n \dfrac{2}{5n} 5n2


例题2:09年14. 无偏估计、二项分布的数字特征
在这里插入图片描述

分析: θ ^ \hat{θ} θ^是θ的无偏估计量: E ( θ ^ ) = θ E(\hat{θ})=θ E(θ^)=θ E ( X ˉ ) = μ = E ( X ) , E ( S 2 ) = σ 2 = D ( X ) E(\bar X)=μ=E(X),E(S^2)=σ²=D(X) E(Xˉ)=μ=E(X)E(S2)=σ2=D(X)
E ( X ˉ + k S 2 ) = n p 2 E(\bar X+kS^2)=np^2 E(Xˉ+kS2)=np2,即 E ( X ˉ ) + k E ( S 2 ) = n p + k n p ( 1 − p ) = n p 2 E(\bar X)+kE(S^2)=np+knp(1-p)=np^2 E(Xˉ)+kE(S2)=np+knp(1p)=np2,化简得 k=-1

答案:-1


例题3:16年23(2)

例题4:12年23(3)



7.3 区间估计

1.置信区间、置信度

P { θ 1 < θ < θ 2 } = 1 − α P\{θ_1<θ<θ_2\}=1-α P{θ1<θ<θ2}=1α

1 − α 1-α 1α称为置信度(置信水平) α α α称为显著性水平

区间 ( θ 1 , θ 2 ) (θ_1,θ_2) (θ1,θ2)称为参数θ的置信度为1-α的置信区间 θ 1 θ₁ θ1 θ 2 θ₂ θ2分别称为置信度为 1 − α 1-α 1α的置信区间的置信下限置信上限


2.求μ的置信区间

正态总体均值μ的置信区间(置信水平为1-α)

待估参数其他参数枢轴量的分布置信区间
μσ²已知 Z = X ‾ − μ σ / n ∼ N ( 0 , 1 ) Z=\dfrac{\overline{X}-μ}{σ/\sqrt{n}}\sim N(0,1) Z=σ/n XμN(0,1) ( X ‾ − Z α 2 σ n , X ‾ + Z α 2 σ n ) (\overline{X}-Z_{\frac{α}{2}}\dfrac{σ}{\sqrt{n}},\overline{X}+Z_{\frac{α}{2}}\dfrac{σ}{\sqrt{n}}) (XZ2αn σ,X+Z2αn σ)
μσ²未知 t = X ‾ − μ S / n ∼ t ( n − 1 ) t=\dfrac{\overline{X}-μ}{S/\sqrt{n}}\sim t(n-1) t=S/n Xμt(n1) ( X ‾ − t α 2 ( n − 1 ) S n , X ‾ + t α 2 ( n − 1 ) S n ) (\overline{X}-t_{\frac{α}{2}}(n-1)\dfrac{S}{\sqrt{n}},\overline{X}+t_{\frac{α}{2}}(n-1)\dfrac{S}{\sqrt{n}}) (Xt2α(n1)n S,X+t2α(n1)n S)


例题1:16年14.   置信区间、置信上限
在这里插入图片描述

分析:置信区间是以 X ˉ \bar{X} Xˉ为中心对称的
X ˉ = 9.5 \bar{X}=9.5 Xˉ=9.5 X ˉ \bar{X} Xˉ到置信下限是1.3,则 X ˉ \bar{X} Xˉ到置信上限也是1.3

答案: ( 8.2 , 10.8 ) (8.2,10.8) (8.210.8)


例题2:03年6.
在这里插入图片描述

分析:
在这里插入图片描述

答案: ( 39.51 , 40.49 ) (39.51,40.49) (39.5140.49)




Ch8. 假设检验

1.拒绝域α、接受域1-α、H₀原假设、H₁备择假设

检验水平(显著性水平)α,即为拒绝域面积。α越小,接受域越大。



例题1:18年8.     假设检验
在这里插入图片描述

分析:α为拒绝域。若拒绝,说明落在α内。若接受,说明落在α外。

答案:D




2.双边检验、单边检验

①接受域看H₀,拒绝域看H₁
易错点:求未知数时,要代入原假设H₀中μ的值 μ 0 μ_0 μ0

(1)双边检验:
①H₀:μ=μ₀,H₁:μ≠μ₀
②α/2
在这里插入图片描述

(2)单边检验:
①H₀:μ≥或≤μ₀,H₁:μ>或<μ₀
②α
在这里插入图片描述



例题1:
在这里插入图片描述

分析:
在这里插入图片描述
答案:求出拒绝域,得 x ˉ = 10 \bar{x}=10 xˉ=10落入拒绝域,拒绝原假设H₀




3.第一类错误、第二类错误

1.犯第一类错误(弃真):H₀为真的情况下,拒绝了H₀。
犯第一类错误的概率: α = P { 拒绝了 H 0 ∣ H 0 为真 } = P { 落在拒绝域 } α=P\{拒绝了H_0|H_0为真 \}=P\{落在拒绝域\} α=P{拒绝了H0H0为真}=P{落在拒绝域}


2.犯第二类错误(取伪):H₀为假的情况下,接受了H₀。
犯第二类错误的概率: β = P { 接受了 H 0 ∣ H 0 为假 } = P { 落在接受域 } β=P\{接受了H_0|H_0为假\}=P\{落在接受域\} β=P{接受了H0H0为假}=P{落在接受域}


常用性质:
P { x > a } = 1 − P { x ≤ a } P\{x>a\}=1-P\{x≤a\} P{x>a}=1P{xa}

Φ ( − x ) = 1 − Φ ( x ) Φ(-x)=1-Φ(x) Φ(x)=1Φ(x)



例题1:23李林六套卷(四)10.   犯第一类错误
在这里插入图片描述

分析:
在这里插入图片描述
答案:C


例题2:21年10.   犯第二类错误
在这里插入图片描述

分析:
在这里插入图片描述
答案:B


例题3:
在这里插入图片描述
在这里插入图片描述

分析:
犯第一类错误的概率α = P{H0为真,落在拒绝域}
犯第二类错误的概率β=P{H1为真,落在接受域}

答案:
在这里插入图片描述


相关文章:

概率论与数理统计:第七章:参数估计 第八章:假设检验

文章目录 Ch7. 参数估计7.1 点估计1.矩估计2.最大似然估计(1)离散型(2)连续型 7.2 评价估计量优良性的标准(1)无偏性 (无偏估计)(2)有效性(3)一致性 7.3 区间估计1.置信区间、置信度2.求μ的置信区间 Ch8. 假设检验1.拒绝域α、接受域1-α、H₀原假设、H₁备择假设2.双边检验、…...

【Kubernetes】Kubernetes的监控工具Promethues

Prometheus 一、Prometheus 概念1. Prometheus 概述2. Prometheus 的监控数据3. Prometheus 的特点4. Prometheus 和 zabbix 区别5. Prometheus 的生态组件5.1 Prometheus server5.2 Client Library5.3 Exporters5.4 Service Discovery5.5 Alertmanager5.6 Pushgateway5.7 Graf…...

【linux】2 Linux编译器-gcc/g++和Linux调试器-gdb

文章目录 一、Linux编译器-gcc/g使用1.1 背景知识1.2 gcc如何完成1.3 函数库1.4 gcc选项 二、linux调试器-gdb使用2.1 背景2.2 开始使用 总结 ヾ(๑╹◡╹)&#xff89;" 人总要为过去的懒惰而付出代价ヾ(๑╹◡╹)&#xff89;" 一、Linux编译器-gcc/g使用 1.1 背景…...

【力扣每日一题】2023.8.17 切披萨的方案数

目录 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 代码&#xff1a; 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 题目给我们一个二维数组来表示一个披萨&#xff0c;其中‘A’表示披萨上的苹果。 让我们切k-1刀&#xff0c;把披萨切成 k 份&#xff0…...

Linux调试器-gdb使用

1. 背景 程序的发布方式有两种&#xff0c; debug 模式和 release 模式 Linux gcc/g 出来的二进制程序&#xff0c;默认是 release 模式 要使用 gdb 调试&#xff0c;必须在源代码生成二进制程序的时候 , 加上 - g 选项 2. 开始使用 gdb binFile 退出&#xff1a; ct…...

linux安装mysql错误处理

linux下mysql的安装与使用 linux安装mysql可有三种方式&#xff1a; 1、yum安装 2、源码安装 3、glibc安装 安装wget yum install -y wget https://blog.csdn.net/darendu/article/details/89874564?utm_sourceapp Linux上error while loading shared libraries问题解决方法…...

Matlab绘制灰度直方图

直方图是根据灰图像绘制的&#xff0c;而不是彩色图像通。查看图像直方图时候&#xff0c;需要先确定图片是否为灰度图&#xff0c;使用MATLAB2019查看图片是否是灰度图片&#xff0c;在读取图片后在MATLAB界面的工作区会显示读取的图像矩阵&#xff0c;如果是&#xff0c;那么…...

http学习笔记1

图解HTTP学习笔记 1.2 HTTP的诞生 CERN&#xff08;欧洲核子研究组织&#xff09;的蒂姆 • 伯纳斯 - 李&#xff08;Tim BernersLee&#xff09;博士提出了一种能让远隔两地的研究者们共享知识的设想。最初设想的基本理念是&#xff1a;借助多文档之间相互关联形成的超文本&am…...

PDF文件分割合并

PDF文件的分割和合并代码。 from PyPDF2 import PdfFileReader,PdfFileWriterdef pdf_split(filename,outputname)pr PdfFileReader(filename)for page in range(p.getNumPages()):pw PdfFileWriter()pw.addPage(pr.getPage(page))with open(f{outputname}{page}.pdf,wb) as…...

物联网无线通信方式总结

本文主要内容(一些物联网无线通信方式) 本文将介绍一些物联网无线通信方式的技术特点、底层调制方式和主要应用场景物联网无线通信方式是指利用无线技术实现物体之间的信息交换和网络连接的方式物联网无线通信方式的选择需要考虑多种因素&#xff0c;如传输距离、功耗、数据速…...

计算机竞赛 python的搜索引擎系统设计与实现

0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; python的搜索引擎系统设计与实现 &#x1f947;学长这里给一个题目综合评分(每项满分5分) 难度系数&#xff1a;3分工作量&#xff1a;5分创新点&#xff1a;3分 该项目较为新颖&#xff…...

ue5 场景搭建和灯光照明参考

https://www.youtube.com/watch?vOCgn40aWVuU https://www.youtube.com/watch?vIGLujClhL5U...

Mycat跨分片Join指南

前言Mycat目前版本支持跨分片的join,主要实现的方式有四种。 全局表 ER分片 HBT ShareJoin ShareJoin在开发版中支持,前面三种方式1.3.0.1支持 2.ShareJoin ShareJoin是一个简单的跨分片Join,基于HBT的方式实现。 目前支持2个表的join,原理就是解析SQL语句,拆分成单表的…...

网络:RIP协议

1. RIP协议原理介绍 RIP是一种比较简单的内部网关协议&#xff08;IGP协议&#xff09;&#xff0c;RIP基于距离矢量的贝尔曼-福特算法(Bellman - Ford)来计算到达目的网络的最佳路径。最初的RIP协议开发时间较早&#xff0c;所以在带宽、配置和管理方面的要求也较低。 路由器运…...

如何优化因为高亮造成的大文本(大字段)检索缓慢问题

首先还是说一下背景&#xff0c;工作中用到了 elasticsearch 的检索以及高亮展示&#xff0c;但是索引中的content字段是读取的大文本内容&#xff0c;所以后果就是索引的单个字段很大&#xff0c;造成单独检索请求的时候速度还可以&#xff0c;但是加入高亮之后检索请求的耗时…...

HTML <table> 标签

实例 一个简单的 HTML 表格,包含两行两列: <table border="1"><tr><th>Month</th><th>Savings</th></tr><tr><td>January</td><td>$100</td></tr> </table>定义和用法 &l…...

ubuntu pdf阅读器okular

sudo apt-get install okular安装完毕后&#xff0c;使用如下命令浏览pdf文档 okular xxx.pdf...

根据源码,模拟实现 RabbitMQ - 虚拟主机 + Consume设计 (7)

目录 一、虚拟主机 Consume设计 1.1、承接问题 1.2、具体实现 1.2.1、消费者订阅消息实现思路 1.2.2、消费者描述自己执行任务方式实现思路 1.2.3、消息推送给消费者实现思路 1.2.4、消息确认 一、虚拟主机 Consume设计 1.1、承接问题 前面已经实现了虚拟主机大部分功…...

docker中bridge、host、container、none四种网络模式简介

目录 一.bridge模式 1.简介 2.演示 &#xff08;1&#xff09;运行两个容器&#xff0c;不指定网络模式情况下默认是bridge模式 &#xff08;2&#xff09;在主机中自动生成了两个veth设备 &#xff08;3&#xff09;查看两个容器的IP地址 &#xff08;4&#xff09;可以…...

排序算法之详解冒泡排序

引入 冒泡排序顾名思义&#xff0c;就是像冒泡一样&#xff0c;泡泡在水里慢慢升上来&#xff0c;由小变大。虽然冒泡排序和冒泡并不完全一样&#xff0c;但却可以帮助我们理解冒泡排序。 思路 一组无序的数组&#xff0c;要求我们从小到大排列 我们可以先将最大的元素放在数组…...

【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15

缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下&#xff1a; struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...

Cursor实现用excel数据填充word模版的方法

cursor主页&#xff1a;https://www.cursor.com/ 任务目标&#xff1a;把excel格式的数据里的单元格&#xff0c;按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例&#xff0c;…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法

树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作&#xff0c;无需更改相机配置。但是&#xff0c;一…...

Admin.Net中的消息通信SignalR解释

定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...

STM32F4基本定时器使用和原理详解

STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...

在Ubuntu中设置开机自动运行(sudo)指令的指南

在Ubuntu系统中&#xff0c;有时需要在系统启动时自动执行某些命令&#xff0c;特别是需要 sudo权限的指令。为了实现这一功能&#xff0c;可以使用多种方法&#xff0c;包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法&#xff0c;并提供…...

C++.OpenGL (10/64)基础光照(Basic Lighting)

基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...

三体问题详解

从物理学角度&#xff0c;三体问题之所以不稳定&#xff0c;是因为三个天体在万有引力作用下相互作用&#xff0c;形成一个非线性耦合系统。我们可以从牛顿经典力学出发&#xff0c;列出具体的运动方程&#xff0c;并说明为何这个系统本质上是混沌的&#xff0c;无法得到一般解…...

HTML前端开发:JavaScript 常用事件详解

作为前端开发的核心&#xff0c;JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例&#xff1a; 1. onclick - 点击事件 当元素被单击时触发&#xff08;左键点击&#xff09; button.onclick function() {alert("按钮被点击了&#xff01;&…...

3403. 从盒子中找出字典序最大的字符串 I

3403. 从盒子中找出字典序最大的字符串 I 题目链接&#xff1a;3403. 从盒子中找出字典序最大的字符串 I 代码如下&#xff1a; class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...