LRU淘汰策略执行过程
1 介绍
Redis无论是惰性删除还是定期删除,都可能存在删除不尽的情况,无法删除完全,比如每次删除完过期的 key 还是超过 25%,且这些 key 再也不会被客户端访问。
这样的话,定期删除和堕性删除可能都彻底的清理掉。如果这种情况长时间持续下去,可能会导致内存耗尽,所以Redis必须有一个完善的内存淘汰机制来保障。这就是我们这一篇的重点,Redis内存自动淘汰机制。
2 Redis内存淘汰策略
在 redis 中总共由8种淘汰策略,默认的淘汰策略是 noeviction。
| noeviction不淘汰策略(默认) | |||
| 淘汰数据策略 | 设置过期时间的淘汰策略 | valatile-random | 随机淘汰算法 |
| volatile-ttl | 淘汰失效时间最短的key | ||
| volatile-lru | 删除最近最少使用的key | ||
| volatile-lfu | 删除访问次数最少的key | ||
| 所有数据的淘汰策略 | allkeys-lru | 删除最近最少使用的key(全部) | |
| allkeys-lfu | 删除访问次数最少的key(全部) | ||
| allkey-random | 随机淘汰算法(全部) |
2.1 设置过期时间的淘汰策略
volatile-ttl、volatile-random、volatile-lru、volatile-lfu 这4种策略淘汰的数据范围为设置了过期时间的数据。
2.2 所有 key 的淘汰策略
allkeys-lru、allkeys-random、allkeys-lfu 这3种淘汰策略无论是否设置了过期时间,内存不足时都会进行淘汰。
也就是说无论它的过期时间到没到,都有可能被删除。
3 LRU淘汰策略执行过程
这边以LRU算法为例子讲解,它的全称是 Least Rencently Used,即将最近最久未使用的算法进行数据淘汰。
我们这边以图例来讲解,整个过程如下:
- 首先设置一个淘汰池(一个链表),假设默认大小是16,里面的数据采用末尾淘汰制。如图中
- MRU:表示链表的表头,代表着最近最常被访问的数据;
- LRU:表示链表的表尾,代表最近最不常使用的数据。
- 如果淘汰池中的数据被访问,则会被移动到 MRU 端,其他位置的数据则相应往后移动一位
- 每次指令操作的时候,自旋会判断当前内存是否满足指令所需要的内存
- 如果当前内存不能满足,会从淘汰池中的尾部拿取一个最适合淘汰的数据
- 取样模式(配置 maxmemory-samples属性)从Redis中获取随机的取样数据,避免一次性读取All Key性能慢
- 在取样的数据中,根据淘汰算法 找到最适合淘汰的数据
- 将需要淘汰的数据从Redis删除,并且从淘汰池移除

这边注意,LRU 更新和新增数据都发生在链表首,删除数据都发生在链表尾。
水果 Orange 跟 Pitaya 被访问,被移动到MRU端,新增的Mango也被插入到MRU端。而最末端的Olive则被删除。
4 算法实现
以下是使用Go语言实现Redis LRU淘汰过程的示例代码,代码注释很清楚:
package main import ( "container/list" "fmt" "time"
) type Redis struct { data map[string]*list.Element // 存储缓存项的键和值,以及它们在LRU链表中的位置 lru *list.List // LRU链表
} type cacheItem struct { key string value string // 记录该缓存项最后一次被访问的时间 lastAccess time.Time
} func NewRedis() *Redis { return &Redis{ data: make(map[string]*list.Element), lru: list.New(), }
} func (r *Redis) Get(key string) (string, bool) { // 从LRU链表中查找缓存项 if elem, ok := r.data[key]; ok { // 将该缓存项移动到链表头部,表示最近被访问过 r.lru.MoveToFront(elem) // 更新缓存项的最后访问时间 item := elem.Value.(*cacheItem) item.lastAccess = time.Now() return item.value, true } return "", false
} func (r *Redis) Set(key string, value string) { // 从LRU链表中查找缓存项 if elem, ok := r.data[key]; ok { // 如果缓存项存在,更新其值和最后访问时间,并将其移动到链表头部 item := elem.Value.(*cacheItem) item.value = value item.lastAccess = time.Now() r.lru.MoveToFront(elem) return } // 如果缓存项不存在,创建新的缓存项并将其添加到LRU链表头部 item := &cacheItem{ key: key, value: value, lastAccess: time.Now(), } elem := r.lru.PushFront(item) r.data[key] = elem // 如果缓存空间已满,执行LRU淘汰操作 for r.lru.Len() > maxItems { // 从链表尾部查找最久未被访问的缓存项 elem := r.lru.Back() item := elem.Value.(*cacheItem) // 如果该缓存项的过期时间已到达,则从链表中删除该缓存项 if item.lastAccess.Add(expireTime).Before(time.Now()) { r.lru.Remove(elem) delete(r.data, item.key) } else { // 否则,只从链表中删除该缓存项 r.lru.Remove(elem) } }
}
在这个示例中,我们使用了一个map来存储缓存项的键和值,以及它们在LRU链表中的位置。我们使用了一个LRU链表来存储缓存项,并按照访问时间将它们排序。在Get方法中,我们从LRU链表中查找缓存项,并将其移动到链表头部,表示最近被访问过。在Set方法中,如果缓存项已存在,我们更新其值和最后访问时间,并将其移动到链表头部;如果缓存项不存在,我们创建新的缓存项并将其添加到LRU链表头部。如果缓存空间已满,我们执行LRU淘汰操作,从链表尾部查找最久未被访问的缓存项,并从链表中删除它。注意,我们还检查了缓存项的过期时间,如果该缓存项已过期,则也会从链表中删除它。
相关文章:
LRU淘汰策略执行过程
1 介绍 Redis无论是惰性删除还是定期删除,都可能存在删除不尽的情况,无法删除完全,比如每次删除完过期的 key 还是超过 25%,且这些 key 再也不会被客户端访问。 这样的话,定期删除和堕性删除可能都彻底的清理掉。如果…...
Kotlin 高阶函数详解
高阶函数 在 Kotlin 中,函数是一等公民,高阶函数是 Kotlin 的一大难点,如果高阶函数不懂的话,那么要学习 Kotlin 中的协程、阅读 Kotlin 的源码是非常难的,因为源码中有太多高阶函数了。 高阶函数的定义 高阶函数的…...
DL——week2
要学明白的知识点: np.dot()的作用 两个数组的点积,即对应元素相乘 numpy.dot(a,b,outNone) a: ndarray 数组 b: ndarray 数组 out: ndarray, 可选,用来保存dot()的计算结果 numpy Ndarray对象 N维数组对象ndarray&am…...
如何撰写骨灰级博士论文?这是史上最全博士论文指导!
博士论文的写作是博士研究生主要要完成的工作。由于存在着较高的难度,较长的写作周期,以及在创新,写作规范,实际及理论意义等方面有着比较高的要求,博士论文的完成一般说来是有相当难度的。一篇好的博士论文不仅是一本…...
08.SpringBoot请求相应
文章目录 1 请求1.1 Postman1.2 简单参数1.2.1 原始方式1.2.2 SpringBoot方式1.2.3 参数名不一致 1.3 实体参数1.3.1 简单实体对象1.3.2 复杂实体对象 1.4 数组集合参数1.4.1 数组1.4.2 集合 1.5 日期参数1.6 JSON参数1.7 路径参数 2 响应2.1 ResponseBody注解2.2 统一响应结果…...
C#详解-Contains、StartsWith、EndsWith、Indexof、lastdexof
目录 简介: 过程: 举例1.1 举例1.2 总结: 简介: 在C#中Contains、StarsWith和EndWith、IndexOf都是字符串函数。 1.Contains函数用于判断一个字符串是否包含指定的子字符串,返回一个布尔值(True或False)。 2.StartsWith函数用于判断一…...
FATE框架中pipline基础教程
目录 1. 用pipline上传数据2. 用 Pipeline 进行 Hetero SecureBoost 的训练和预测3. 用 Pipeline 构建神经网络模型3.1 Homo-NN Quick Start: A Binary Classification Task3.2 Hetero-NN Quick Start: A Binary Classification Task 4. 自定义数据集示例:实现一个简…...
Atlas 元数据管理
Atlas 元数据管理 1.Atlas入门 1.1概述 元数据原理和治理功能,用以构建数据资产的目录。对这个资产进行分类和管理,形成数据字典。 提供围绕数据资产的协作功能。 表和表之间的血缘依赖 字段和字段之间的血缘依赖 1.2架构图 导入和导出࿱…...
编程题练习@8-23
分享8月23日两道编程题: 1 开幕式排列 题目描述 导演在组织进行大运会开幕式的排练,其中一个环节是需要参演人员围成一个环形。 演出人员站成了一圈,出于美观度的考虑,导演不希望某一个演员身边的其他人比他低太多或者高太多。 现…...
static相关知识点详解
文章目录 一. 修饰成员变量二. 修饰成员方法三. 修饰代码块四. 修饰类 一. 修饰成员变量 static 修饰的成员变量,称为静态成员变量,该变量不属于某个具体的对象,是所有对象所共享的。 public class Student {private String name;private sta…...
Redisson 分布式锁
Redis是基础客户端库,可用于执行基本操作。 Redisson是基于Redis的Java客户端,提供高级功能如分布式锁、分布式集合和分布式对象。 Redisson提供更友好的API,支持异步和响应式编程,提供内置线程安全和失败重试机制。 实现步骤…...
继承(C++)
继承 一、初识继承概念“登场”语法格式 继承方式九种继承方式组合小结(对九种组合解释) 二、继承的特性赋值转换 一一 切片 / 切割作用域 一一 隐藏 / 重定义 三、派生类的默认成员函数派生类的默认成员函数1. 构造函数2. 拷贝构造3. 赋值运算符重载4. …...
文心一言 VS 讯飞星火 VS chatgpt (80)-- 算法导论7.4 5题
五、如果用go语言,当输入数据已经“几乎有序”时,插入排序速度很快。在实际应用中,我们可以利用这一特点来提高快速排序的速度。当对一个长度小于 k 的子数组调用快速排序时,让它不做任何排序就返回。当上层的快速排序调用返回后&…...
SpringCloud 概述
文章目录 SpringCloud 概述一、微服务中的相关概念1、服务注册与发现2、负载均衡3、熔断4、链路追踪5、API网关 二、SpringCloud的介绍三、SpringCloud的架构1、SpringCloud中的核心组件(1)Spring Cloud Netflix组件(2)Spring Clo…...
Apache ShenYu 学习笔记一
1、简介 这是一个异步的,高性能的,跨语言的,响应式的 API 网关。 官网文档:Apache ShenYu 介绍 | Apache ShenYu仓库地址:GitHub - apache/shenyu: Apache ShenYu is a Java native API Gateway for service proxy, pr…...
uniapp 禁止遮罩层下的页面滚动
使用 touchmove.stop.prevent"toMoveHandle" 事件修饰符 若需要禁止蒙版下的页面滚动,可使用 touchmove.stop.prevent"moveHandle",moveHandle 可以用来处理 touchmove 的事件,也可以是一个空函数。将这个方法直接丢到弹…...
postgresql 分组
postgresql 数据汇总 分组汇总聚合函数注意 总结 分组统计总结 高级分组总结 分组汇总 聚合函数 聚合函数(aggregate function)针对一组数据行进行运算,并且返回单个结果。PostgreSQL 支持以下常见的聚合函数: • AVG - 计算一…...
RT1052的EPWM
文章目录 1 EPWM介绍1.1 引脚1.2 时钟1.3 比较寄存器 2 函数 1 EPWM介绍 RT1052 具有 4 个 eFlexPWM(eFlexWM1~eFlex_PWM4)。 每个 eFlexPWM 可以产生四路互补 PWM即产生 8 个 PWM,也可以产生相互独立的 PWM 波。四路分别是模块0-3每个 eFlexPWM 具有各自的故障检…...
k8s 安装istio (一)
前置条件 已经完成 K8S安装过程十:Kubernetes CNI插件与CoreDNS服务部署 部署 istio 服务网格与 Ingress 服务用到了 helm 与 kubectl 这两个命令行工具,这个命令行工具依赖 ~/.kube/config 这个配置文件,目前只在 kubernetes master 节点中…...
vue 项目在编译时,总是出现系统崩的状态,报错信息中有v7 或者 v8 的样式-项目太大内存溢出
vue 项目在编译时,总是出现系统崩的状态,node 命令框也会报错,如下图:有v7 或者 v8 的样式。 原因分析: 分析:遇到与上面图片相似的问题,我们要首先要想到是否是 有关内存的问题,当然…...
Zustand 状态管理库:极简而强大的解决方案
Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...
MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例
一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...
遍历 Map 类型集合的方法汇总
1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...
令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍
文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结: 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析: 实际业务去理解体会统一注…...
SpringCloudGateway 自定义局部过滤器
场景: 将所有请求转化为同一路径请求(方便穿网配置)在请求头内标识原来路径,然后在将请求分发给不同服务 AllToOneGatewayFilterFactory import lombok.Getter; import lombok.Setter; import lombok.extern.slf4j.Slf4j; impor…...
Netty从入门到进阶(二)
二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架,用于…...
Rust 开发环境搭建
环境搭建 1、开发工具RustRover 或者vs code 2、Cygwin64 安装 https://cygwin.com/install.html 在工具终端执行: rustup toolchain install stable-x86_64-pc-windows-gnu rustup default stable-x86_64-pc-windows-gnu 2、Hello World fn main() { println…...
在 Spring Boot 项目里,MYSQL中json类型字段使用
前言: 因为程序特殊需求导致,需要mysql数据库存储json类型数据,因此记录一下使用流程 1.java实体中新增字段 private List<User> users 2.增加mybatis-plus注解 TableField(typeHandler FastjsonTypeHandler.class) private Lis…...
Leetcode33( 搜索旋转排序数组)
题目表述 整数数组 nums 按升序排列,数组中的值 互不相同 。 在传递给函数之前,nums 在预先未知的某个下标 k(0 < k < nums.length)上进行了 旋转,使数组变为 [nums[k], nums[k1], …, nums[n-1], nums[0], nu…...
comfyui 工作流中 图生视频 如何增加视频的长度到5秒
comfyUI 工作流怎么可以生成更长的视频。除了硬件显存要求之外还有别的方法吗? 在ComfyUI中实现图生视频并延长到5秒,需要结合多个扩展和技巧。以下是完整解决方案: 核心工作流配置(24fps下5秒120帧) #mermaid-svg-yP…...
