当前位置: 首页 > news >正文

基于GRU门控循环网络的时间序列预测matlab仿真,对比LSTM网络

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

LSTM:

 

 

GRU

 

 

2.算法运行软件版本

matlab2022a

3.部分核心程序

%构建GRU网络模型
layers = [ ...sequenceInputLayer(N_feature)gruLayer(N_hidden)fullyConnectedLayer(N_Rpes)regressionLayer]; 
% 定义训练选项
options = trainingOptions('adam', ...'MaxEpochs',250, ...'GradientThreshold',1, ...'InitialLearnRate',0.005, ...'MiniBatchSize',50, ...'LearnRateSchedule','piecewise', ...'LearnRateDropPeriod',90, ...'LearnRateDropFactor',0.2, ...'Verbose',false, ...'Plots','training-progress');    % 初始化RMSE、MAE和MAPE
Rmse2 = [];
Mae2  = [];
Mape2 = [];XTestIp          = TT(1:Num_dats+1);
% 训练GRU网络模型
net              = trainNetwork([XTrainIp(1:end-1);XTestIp(1:end-1)],XTestIp(2:end),layers,options); 
% 使用训练好的模型进行预测
[net,YPred]      = predictAndUpdateState(net,[XTrainIp(end);XTestIp(end)]);
numTimeStepsTest = numel(YTestIp);
for i = 2:numTimeStepsTest                                                [net,YPred(:,i)] = predictAndUpdateState(net,[YTrainIp(i-1);YPred(:,i-1)],'ExecutionEnvironment','cpu');
end                                                                        
% 对预测结果进行反归一化
YPred   = (Vmax2-Vmin2)*YPred + Vmin2;                                             
YTest   = YTestIp(1:end);
YTest   = (Vmax2-Vmin2)*YTest + Vmin2;           
% 计算RMSE、MAE和MAPE
Rmse2   = (sqrt(mean((YPred-YTest).^2)))*100/(max(YTest))
Mae2    = mean(abs(YPred-YTest))
Mape2   = mean(abs((YPred(YTest~=0)-YTest(YTest~=0)))./YTest(YTest~=0))*100         
% 计算MAPE绝对误差
mape1   =((YPred(YTest~=0)-YTest(YTest~=0))./YTest(YTest~=0));
% 反归一化测试集输入数据
XTestIp = (Vmax2-Vmin2)*XTestIp + Vmin2;  
51

4.算法理论概述

        门控循环单元(Gated Recurrent Unit,简称GRU)是一种用于序列建模和预测的递归神经网络(RNN)变体。GRU通过引入门控机制,克服了传统RNN在处理长序列时的梯度消失问题,并在许多任务中取得了优异的性能。下面将详细介绍GRU的原理、数学公式以及其在时间序列预测中的应用。GRU是一种在长序列上具有较好表现的递归神经网络,通过门控机制有效地捕捉序列中的长距离依赖关系。与长短时记忆网络(LSTM)相比,GRU使用更少的门控单元,因此参数较少,更易于训练。

GRU的核心在于两个门控单元:重置门(Reset Gate)和更新门(Update Gate)。

  • 重置门(r_trt​)用于控制是否将过去的信息纳入当前状态的计算中。
  • 更新门(z_tzt​)用于控制过去状态和当前输入之间的权重。

GRU的状态更新公式如下:

 

 

      GRU在时间序列预测中具有广泛应用,它可以根据过去的观测值来预测未来的值。通过对序列数据进行训练,GRU可以学习到数据中的模式和趋势,并用于预测时间序列的下一个步骤。例如,在股票价格预测、天气预测、自然语言处理等领域中,GRU被用来捕捉序列数据中的关键信息,从而进行准确的预测。

        总结: GRU是一种门控循环神经网络,通过引入更新门和重置门的机制,有效地解决了传统RNN的梯度消失问题,能够捕捉序列数据中的长距离依赖关系。它在时间序列预测等任务中表现优异,为处理序列数据提供了强大的工具。

5.算法完整程序工程

OOOOO

OOO

O

相关文章:

基于GRU门控循环网络的时间序列预测matlab仿真,对比LSTM网络

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 LSTM: GRU 2.算法运行软件版本 matlab2022a 3.部分核心程序 %构建GRU网络模型 layers [ ...sequenceInputLayer(N_feature)gruLayer(N_hidden)f…...

windows上ffmpeg如何录制双屏幕中的一个屏幕上的视频

首先,如何在window上安装ffmpeg自己查找scoop安装ffmpeg. 如题: 如果你有两个屏幕,如何让ffmpeg来录制其中的一个屏幕的视频呢。 很简单,首先你要查看另外一个屏幕的分辨率: 第一步:进入系统中 第二步&am…...

使用Python搭建服务器公网展示本地电脑文件

文章目录 1.前言2.本地http服务器搭建2.1.Python的安装和设置2.2.Python服务器设置和测试 3.cpolar的安装和注册3.1 Cpolar云端设置3.2 Cpolar本地设置 4.公网访问测试5.结语 1.前言 Python作为热度比较高的编程语言,其语法简单且语句清晰,而且python有…...

Java IO流(五)Netty实战[TCP|Http|心跳检测|Websocket]

Netty入门代码示例(基于TCP服务) Server端 package com.bierce.io.netty.simple; import io.netty.bootstrap.ServerBootstrap; import io.netty.buffer.ByteBuf; import io.netty.buffer.Unpooled; import io.netty.channel.*; import io.netty.channel.nio.NioEventLoopGro…...

C#基础进阶

C#基础进阶 泛型 http://www.runoob.com/csharp/csharp-generic.html 匿名函数 http://www.runoob.com/csharp/csharp-anonymous-methods.html 扩展方法 https://blog.csdn.net/u011127019/article/details/54728886 https://docs.microsoft.com/zh-cn/dotnet/csharp/pr…...

Java:ArrayList集合、LinkedList(链表)集合的底层原理及应用场景

ArrayList集合的底层原理及应用场景 LinkedList(链表)集合的底层原理及应用场景 单向链表 增加数据 删除数据 双向链表 LinkedList的应用场景之一:可以用来设计队列 入队 出队 LinkedList的应用场景之一:可以用来设计栈 压栈(push),addFirst…...

【Python】json文件的读取

文章目录 1. json简介2.json的使用规范3.json文件的书写4.json文件的读取 1. json简介 JSON(JavaScript Object Notation)是一种轻量级的数据交换格式,常用于将结构化数据进行传输和存储。它基于JavaScript语法,但可以被多种编程…...

专用杂凑函数的消息鉴别码算法学习记录

声明 本文是学习github5.com 网站的报告而整理的学习笔记,分享出来希望更多人受益,如果存在侵权请及时联系我们 范围 GB/T 15852的本部分规定了三种采用专用杂凑函数的消息鉴别码算法。这些消息鉴别码算法可用作数据完整性检验,检验数据是否被非授权地改变。同样…...

Golang使用消息队列(RabbitMQ)

最近在使用Golang做了一个网盘项目(类似百度网盘),这个网盘项目有一个功能描述如下:用户会删除一个文件到垃圾回收站,回收站的文件有一个时间期限,比如24h,24h后数据库中记录和oss中文件会被删除…...

Apache Spark远程代码执行漏洞(CVE-2023-32007)漏洞复现

漏洞描述 Apache Spark是美国阿帕奇(Apache)基金会的一款支持非循环数据流和内存计算的大规模数据处理引擎。 Apache Spark 3.4.0之前版本存在命令注入漏洞,该漏洞源于如果ACL启用后,HttpSecurityFilter中的代码路径可以允许通过…...

春秋云镜 :CVE-2020-21650(MyuCMS后台rce)

一、题目 靶标介绍: MyuCMS开源内容管理系统,采用ThinkPHP开发而成的社区商城聚合,插件,模板,轻便快捷容易扩展 其2.2版本中admin.php/config/add方法存在任意命令执行漏洞. 进入题目: exp: url/index.p…...

测试框架pytest教程(7)实现 xunit 风格的setup

pytest支持setup和teardown,对于使用unittest和nose框架的用户来说对这些很熟悉,但是在pytest可以使用功能更强大的fixture来实现固定装置。 模块级别 如果单个模块中有多个测试函数和测试类,您可以选择实现以下固定方法,这些方…...

用队列实现栈

目录 题目题目要求示例 解答方法一、实现思路时间复杂度和空间复杂度代码 方法二、实现思路时间复杂度和空间复杂度代码 方法三、实现思路时间复杂度和空间复杂度代码 总结 题目 用队列实现栈 题目要求 题目链接 示例 解答 方法一、 使用两个队列来实现栈。 实现思路 题…...

Anolis 8.6 下 Redis 7.2.0 集群搭建和配置

Redis 7.2.0 搭建和集群配置 一.Redis 下载与单机部署1.Redis 下载2.虚拟机配置3.Redis 单机源码安装和测试4.Java 单机连接测试1.Pom 依赖2.配置文件3.启动类4.配置类5.单元测试6.测试结果 二.Redis 集群部署1.主从1.从节点配置2.Java 测试 2.哨兵1.哨兵节点配置2.复制一个哨兵…...

综合能源系统(8)——综合能源系统支撑技术

综合能源系统关键技术与典型案例  何泽家,李德智主编 1、大数据技术 1.1、大数据技术概述 大数据是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高…...

MySQL5.7数据目录结构

以CentOS7为例,数据目录为/var/lib/mysql/,其内容如下: [rootscentos szc]# ll /var/lib/mysql/ total 122952 -rw-r----- 1 mysql mysql 56 Jan 15 16:02 auto.cnf -rw------- 1 mysql mysql 1680 Jan 15 16:02 ca-key.pem -rw-r…...

Python Opencv实践 - 图像直方图均衡化

import cv2 as cv import numpy as np import matplotlib.pyplot as pltimg cv.imread("../SampleImages/pomeranian.png", cv.IMREAD_COLOR) print(img.shape)#图像直方图计算 #cv.calcHist(images, channels, mask, histSize, ranges, hist, accumulate) #images&…...

GAN:对抗生成网络,前向传播和后巷传播的区别

目录 GAN:对抗生成网络 损失函数 判别器开始波动很大,先调整判别器 生成样本和真实样本的统一:真假难辨​编辑 文字专图片​编辑 头像转表情包​编辑 头像转3D​编辑 后向传播 1. 前向传播(forward) 2. 反向传播&…...

压力变送器的功能与应用

压力变送器是用于测量气体或者液体等介质压力的设备,能够将压力转化为4 G信号传输到监控平台,工作人员可以在电脑或者手机上登录平台查看监测到的数据,并根据数据制定下一步的计划。 压力变送器的功能: 压力变送器采用了高性能感…...

排序算法:选择排序

选择排序的思想是&#xff1a;双重循环遍历数组&#xff0c;每经过一轮比较&#xff0c;找到最小元素的下标&#xff0c;将其交换至首位。 public static void selectionSort(int[] arr) {int minIndex;for (int i 0; i < arr.length - 1; i) {minIndex i;for (int j i …...

【Linux】shell脚本忽略错误继续执行

在 shell 脚本中&#xff0c;可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行&#xff0c;可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令&#xff0c;并忽略错误 rm somefile…...

RocketMQ延迟消息机制

两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数&#xff0c;对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后&#xf…...

2021-03-15 iview一些问题

1.iview 在使用tree组件时&#xff0c;发现没有set类的方法&#xff0c;只有get&#xff0c;那么要改变tree值&#xff0c;只能遍历treeData&#xff0c;递归修改treeData的checked&#xff0c;发现无法更改&#xff0c;原因在于check模式下&#xff0c;子元素的勾选状态跟父节…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)

宇树机器人多姿态起立控制强化学习框架论文解析 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架&#xff08;一&#xff09; 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...

Java多线程实现之Thread类深度解析

Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...

React---day11

14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store&#xff1a; 我们在使用异步的时候理应是要使用中间件的&#xff0c;但是configureStore 已经自动集成了 redux-thunk&#xff0c;注意action里面要返回函数 import { configureS…...

#Uniapp篇:chrome调试unapp适配

chrome调试设备----使用Android模拟机开发调试移动端页面 Chrome://inspect/#devices MuMu模拟器Edge浏览器&#xff1a;Android原生APP嵌入的H5页面元素定位 chrome://inspect/#devices uniapp单位适配 根路径下 postcss.config.js 需要装这些插件 “postcss”: “^8.5.…...

Selenium常用函数介绍

目录 一&#xff0c;元素定位 1.1 cssSeector 1.2 xpath 二&#xff0c;操作测试对象 三&#xff0c;窗口 3.1 案例 3.2 窗口切换 3.3 窗口大小 3.4 屏幕截图 3.5 关闭窗口 四&#xff0c;弹窗 五&#xff0c;等待 六&#xff0c;导航 七&#xff0c;文件上传 …...

AI语音助手的Python实现

引言 语音助手(如小爱同学、Siri)通过语音识别、自然语言处理(NLP)和语音合成技术,为用户提供直观、高效的交互体验。随着人工智能的普及,Python开发者可以利用开源库和AI模型,快速构建自定义语音助手。本文由浅入深,详细介绍如何使用Python开发AI语音助手,涵盖基础功…...

uniapp 实现腾讯云IM群文件上传下载功能

UniApp 集成腾讯云IM实现群文件上传下载功能全攻略 一、功能背景与技术选型 在团队协作场景中&#xff0c;群文件共享是核心需求之一。本文将介绍如何基于腾讯云IMCOS&#xff0c;在uniapp中实现&#xff1a; 群内文件上传/下载文件元数据管理下载进度追踪跨平台文件预览 二…...