《合成孔径雷达成像算法与实现》Figure3.13——匹配滤波器的三种实现方式


clc
clear
close all% 参数设置
TBP = 80; % 时间带宽积
T = 10e-6; % 脉冲持续时间
N_ZD = 60; % 零频点位于中点右侧的距离,P58% 参数计算
B = TBP/T; % 信号带宽
K = B/T; % 线性调频频率
alpha_os = 5; % 过采样率
F = alpha_os*B; % 采样频率
N = 2*ceil(F*T/2); % 采样点数
dt = T/N; % 采样时间间隔
t_c = N_ZD*dt; % 脉冲时间偏移% 变量设置
t = -T/2:dt:T/2-dt; % 时间变量% 信号表达
st1 = exp(1j*pi*K*(t-t_c).^2); % 有时间偏移的chirp信号
st2 = zeros(1,N); % 等长的空信号
st = [zeros(1,40),st1,st2,st1,st2,st1,zeros(1,40)];
N_st = length(st); % 信号长度
Sf = fftshift(fft(st)); % 信号频域表达式
f = -F/2:F/N_st:F/2-F/N_st; % 频率变量
n = 0:N_st-1; % 采样点% 窗函数
window_1 = kaiser(N,2.5)'; % 时域窗函数
Window_1 = fftshift(window); % 频域窗函数% 匹配滤波——方式1
ht_1 = conj(fliplr(st1)); % 将时间反褶后的复制脉冲取复共轭
%ht_window_1 = window_1.*ht_1; % 加窗的时域匹配滤波器表达式
Hf_1 = fftshift(fft(ht_1,N_st)); % 补零离散傅里叶变换
Sf_out_1 = Sf.*Hf_1; % 频域输出
st_out_1 = ifft(ifftshift(Sf_out_1)); % 时域输出% 匹配滤波——方式2
ht_2 = st1; % 复制脉冲
Hf_2 = conj(fftshift(fft(ht_2,N_st))); % 补零后离散傅里叶变换后复共轭
Sf_out_2 = Sf.*Hf_2; % 频域输出
st_out_2 = ifft(ifftshift(Sf_out_2)); % 时域输出
plot(abs(st_out_2))% 匹配滤波——方式3
window_3 = kaiser(N_st,2.5)'; % 信号长度的窗函数
Window_3 = fftshift(window_3); % 频域窗函数
Hf_3 = Window_3.*exp(1j*pi*f.^2/K); % 匹配滤波器频域表达式
Sf_out_3 = Sf.*Hf_3;
st_out_3 = ifft(ifftshift(Sf_out_3));% 绘图
subplot(411),plot(n,real(st)),axis([0 N_st,-1.2 1.2])
subplot(412),plot(n,abs(st_out_1)),xlim([0,N_st])
subplot(413),plot(n,abs(st_out_2)),xlim([0,N_st])
subplot(414),plot(n,abs(st_out_3)),xlim([0,N_st])

可以看到方式一脉冲压缩至输入序列的后沿,方式二脉冲压缩至输入序列前沿,方式三脉冲压缩至零频位置
相关文章:
《合成孔径雷达成像算法与实现》Figure3.13——匹配滤波器的三种实现方式
clc clear close all% 参数设置 TBP 80; % 时间带宽积 T 10e-6; % 脉冲持续时间 N_ZD 60; % 零频点位于中点右侧的距离,P58% 参数计算 B TBP/T; …...
Android企业项目开发实训室建设方案
一 、系统概述 Android企业项目开发作为新一代信息技术的重点和促进信息消费的核心产业,已成为我国转变信息服务业的发展新热点:成为信息通信领域发展最快、市场潜力最大的业务领域。互联网尤其是移动互联网,以其巨大的信息交换能力和快速渗透…...
11_Redis经典五大类型源码及底层实现
Redis经典五大类型源码及底层实现 一、Redis数据类型的底层数据结构 SDS动态字符串双向链表压缩列表 zpilist哈希表 hashtable调表 skiplist整数集合 intset快速列表 quicklist紧凑列表 listpack 二、Redis源码地址 Github:https://github.com/redis/redis 三、…...
AWS WAF实战、优势对比和缺陷解决
文章目录 挑战和目标AWS WAF的优势AWS WAF的不足我是怎么做的?什么是比较好的AWS WAF设计? 笔者为了解决公司Web站点防御性问题,较为深入的研究AWS WAF的相关规则。面对上千万的冲突,笔者不得设计出一种能漂亮处理冲突数据WAF规则。 AWS WAF开发人员在…...
13,【设计模式】代理
代理 代理支持任意参数的简单代理实现 代理 代理的本质是函数指针 代理分为单播,多播,动态多播(ue4中提出的) 单播:在网络通信中,单播是一种一对一的通信方式 多播:在网络通信中,…...
基于IDEA使用maven创建hibernate项目
1、创建maven项目 2、导入hibernate需要的jar包 <!--hibernate核心依赖--><dependency><groupId>org.hibernate</groupId><artifactId>hibernate-core</artifactId><version>5.4.1.Final</version></dependency><!--…...
使用Termux在安卓手机上搭建Hexo博客网站,并发布到公网访问
文章目录 1. 安装 Hexo2. 安装cpolar内网穿透3. 公网远程访问4. 固定公网地址 Hexo 是一个用 Nodejs 编写的快速、简洁且高效的博客框架。Hexo 使用 Markdown 解析文章,在几秒内,即可利用靓丽的主题生成静态网页。 下面介绍在Termux中安装个人hexo博客并…...
宝塔 杀死 java服务 netstat -tlnp | grep :7003 kill 2205698
7003 是端口 netstat -tlnp | grep :7003 kill 2205698...
Python3 数据类型转换
Python3 数据类型转换 有时候,我们需要对数据内置的类型进行转换,数据类型的转换,一般情况下你只需要将数据类型作为函数名即可。 Python 数据类型转换可以分为两种: 隐式类型转换 - 自动完成显式类型转换 - 需要使用类型函数来…...
Cookie 和 Session 的工作流程
目录 一、Cookie是什么? 二、Session是什么? 三、Cookie的工作流程 四、Session的工作流程 五、Session和Cookie的区别和联系 一、Cookie是什么? Cookie是一种在网站和用户之间交换信息的机制。它是由Web服务器发送给用户浏览器的小型文本文件ÿ…...
AutoSAR配置与实践(基础篇)3.6 BSW的WatchDog功能
3.6 BSW的WatchDog功能 一、WatchDog功能介绍1.1 WatchDog 模块组成1.2 内外部看门狗区别和原理1.3 常见看门狗校验方式一、WatchDog功能介绍 1.1 WatchDog 模块组成 WatchDog 即看门狗功能。这个看门狗不是真正看家的狗,而是软件的一个模块,但是因为功能类似故以此起名。主…...
运维高级第6次作业
1.安装docker服务,配置镜像加速器 Docker安装与镜像加速器配置_ZRSAI的博客-CSDN博客 2.下载系统镜像(Ubuntu、 centos) 执行该命令后,Docker会自动从Docker Hub镜像库中下载Ubuntu镜像,并将其保存到本地计算机上: [ro…...
MongoDB使用GridFS存储大数据(Java)
MongoDB 是一个灵活的 NoSQL 数据库,能够存储大量的数据。但是,当涉及到特别大的数据项,比如大文件、视频或大型图片时,MongoDB 提供了一个特殊的方法来存储这些数据:GridFS。 简介: 1. 什么是 GridFS&am…...
内网穿透实战应用-windwos10系统搭建我的世界服务器,内网穿透实现联机游戏Minecraft
文章目录 1. Java环境搭建2.安装我的世界Minecraft服务3. 启动我的世界服务4.局域网测试连接我的世界服务器5. 安装cpolar内网穿透6. 创建隧道映射内网端口7. 测试公网远程联机8. 配置固定TCP端口地址8.1 保留一个固定tcp地址8.2 配置固定tcp地址 9. 使用固定公网地址远程联机 …...
pytorch基于ray和accelerate实现多GPU数据并行的模型加速训练
在pytorch的DDP原生代码使用的基础上,ray和accelerate两个库对于pytorch并行训练的代码使用做了更加友好的封装。 以下为极简的代码示例。 ray ray.py #codingutf-8 import os import sys import time import numpy as np import torch from torch import nn im…...
[蓝帽杯 2022 初赛]domainhacker
打开流量包,追踪TCP流,看到一串url编码 放到瑞士军刀里面解密 最下面这一串会觉得像base64编码 删掉前面两个字符就可以base64解码 依次类推,提取到第13个流,得到一串编码其中里面有密码 导出http对象 发现最后有个1.rar文件 不出…...
在 Pytorch 中使用 TensorBoard
机器学习的训练过程中会产生各类数据,包括 “标量scalar”、“图像image”、“统计图diagram”、“视频video”、“音频audio”、“文本text”、“嵌入Embedding” 等等。为了更好地追踪和分析这些数据,许多可视化工具应运而生,比如之前介绍的…...
Grafana Dashboard 备份方案
文章目录 Grafana Dashboard 备份方案引言工具简介支持的组件要求配置备份安装使用 pypi 安装grafana备份工具配置环境变量使用Grafana Backup Tool 进行备份恢复备份 Grafana Dashboard恢复 Grafana Dashboard结论Grafana Dashboard 备份方案 引言 每个使用 Grafana 的同学都…...
opencv-疲劳检测-眨眼检测
#导入工具包 from scipy.spatial import distance as dist from collections import OrderedDict import numpy as np import argparse import time import dlib import cv2FACIAL_LANDMARKS_68_IDXS OrderedDict([("mouth", (48, 68)),("right_eyebrow",…...
2023-08-24力扣每日一题
链接: 1267. 统计参与通信的服务器 题意: 同行同列可以发生通信,求能发生通信的机器数量 解: 标记每行/每列的机器个数即可 实际代码: #include<bits/stdc.h> using namespace std; class Solution { pub…...
【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...
挑战杯推荐项目
“人工智能”创意赛 - 智能艺术创作助手:借助大模型技术,开发能根据用户输入的主题、风格等要求,生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用,帮助艺术家和创意爱好者激发创意、提高创作效率。 - 个性化梦境…...
DockerHub与私有镜像仓库在容器化中的应用与管理
哈喽,大家好,我是左手python! Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库,用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...
相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了: 这一篇我们开始讲: 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下: 一、场景操作步骤 操作步…...
解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八
现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet,点击确认后如下提示 最终上报fail 解决方法 内核升级导致,需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...
基于数字孪生的水厂可视化平台建设:架构与实践
分享大纲: 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年,数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段,基于数字孪生的水厂可视化平台的…...
OkHttp 中实现断点续传 demo
在 OkHttp 中实现断点续传主要通过以下步骤完成,核心是利用 HTTP 协议的 Range 请求头指定下载范围: 实现原理 Range 请求头:向服务器请求文件的特定字节范围(如 Range: bytes1024-) 本地文件记录:保存已…...
视频字幕质量评估的大规模细粒度基准
大家读完觉得有帮助记得关注和点赞!!! 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用,因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型(VLMs)在字幕生成方面…...
从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)
设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile,新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...
相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...
