当前位置: 首页 > news >正文

wordpress点赞/什么是seo文章

wordpress点赞,什么是seo文章,私做政府网站,wordpress恶意注册👨‍💻个人主页:元宇宙-秩沅 👨‍💻 hallo 欢迎 点赞👍 收藏⭐ 留言📝 加关注✅! 👨‍💻 本文由 秩沅 原创 👨‍💻 收录于专栏:Uni…

在这里插入图片描述


👨‍💻个人主页:@元宇宙-秩沅

👨‍💻 hallo 欢迎 点赞👍 收藏⭐ 留言📝 加关注✅!

👨‍💻 本文由 秩沅 原创

👨‍💻 收录于专栏:Unity游戏demo

🅰️Unity3D赛车游戏



文章目录

    • 🅰️Unity3D赛车游戏
    • 前言
    • 🎶(==A==)车辆优化——阿克曼转向添加
        • 😶‍🌫️认识阿克曼转向
        • 😶‍🌫️区别:
        • 😶‍🌫️关键代码
        • 😶‍🌫️完整代码
    • 🎶(==B==)车辆优化——车身持续稳定的优化
        • 😶‍🌫️速度属性实时转换
        • 😶‍🌫️为车子添加下压力
        • 😶‍🌫️质心的添加centerMess
        • 😶‍🌫️轮胎的平滑度的显示
    • 🅰️


前言


😶‍🌫️版本: Unity2021
😶‍🌫️适合人群:Unity初学者
😶‍🌫️学习目标:3D赛车游戏的基础制作
😶‍🌫️技能掌握:



🎶(A车辆优化——阿克曼转向添加


😶‍🌫️认识阿克曼转向

引用:阿克曼转向是一种现代汽车的转向方式,也是移动机器人的一种运动模式,在汽车转弯的时候,内外轮转过的角度不一样,内侧轮胎转弯半径小于外侧轮胎

原理图:
_____________在这里插入图片描述
简单理解一个杆子把左轮和右轮连接起来一起转。

在这里插入图片描述
左轮的旋转的半径小于右轮

优点:大大减小了车轮转向需要的空间,转向更加稳定

  • 阿克曼公式:

在这里插入图片描述
β为汽车前外轮转角,α为汽车前内轮转角,K为两主销中心距,L为轴距。

在这里插入图片描述

😶‍🌫️区别:

  • 未添加阿克曼转向之前的原理:

    通过控制轮子的最大转向范围来转向

在这里插入图片描述

  • 添加之后

    更稳定,机动性更强

在这里插入图片描述

😶‍🌫️关键代码

  • 后轮距尺寸设置为1.5f ,轴距设置为2.55f ,radius 默认为6,radius 越大旋转的角度看起来越小
 if (horizontal > 0 ) {
//后轮距尺寸设置为1.5f ,轴距设置为2.55f ,radius 默认为6,radius 越大旋转的角度看起来越小wheels[0].steerAngle = Mathf.Rad2Deg * Mathf.Atan(2.55f / (radius + (1.5f / 2))) * horizontal;wheels[1].steerAngle = Mathf.Rad2Deg * Mathf.Atan(2.55f / (radius - (1.5f / 2))) * horizontal;} else if (horizontal < 0 ) {                                                          wheels[0].steerAngle = Mathf.Rad2Deg * Mathf.Atan(2.55f / (radius - (1.5f / 2))) * horizontal;wheels[1].steerAngle = Mathf.Rad2Deg * Mathf.Atan(2.55f / (radius + (1.5f / 2))) * horizontal;} else {wheels[0].steerAngle =0;wheels[1].steerAngle =0;}

😶‍🌫️完整代码

在这里插入图片描述

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
//-------------------------------------
//—————————————————————————————————————
//___________项目:       ______________
//___________功能:  车轮的运动
//___________创建者:_______秩沅________
//_____________________________________
//-------------------------------------//驱动模式的选择
public enum EDriveType
{frontDrive,   //前轮驱动backDrive,    //后轮驱动allDrive      //四驱
}public class WheelMove : MonoBehaviour
{//-------------------------------------------//四个轮子的碰撞器public WheelCollider[] wheels ;//网格的获取public GameObject[] wheelMesh;//扭矩力度public float motorflaot = 200f;//初始化三维向量和四元数private Vector3 wheelPosition = Vector3.zero;private Quaternion wheelRotation = Quaternion.identity;//-------------------------------------------//驱动模式选择 _默认前驱public EDriveType DriveType = EDriveType.frontDrive;//轮半径public float radius = 0.25f;private void FixedUpdate(){WheelsAnimation(); //车轮动画VerticalContorl(); //驱动管理HorizontalContolr(); //转向管理}//垂直轴方向管理(驱动管理)public void VerticalContorl(){switch (DriveType){case EDriveType.frontDrive: //选择前驱if (InputManager.InputManagerment.vertical != 0) //当按下WS键时生效{for (int i = 0; i < wheels.Length - 2; i++){//扭矩力度wheels[i].motorTorque = InputManager.InputManagerment.vertical *(motorflaot / 2); //扭矩马力归半}}break;case EDriveType.backDrive://选择后驱if (InputManager.InputManagerment.vertical != 0) //当按下WS键时生效{for (int i = 2; i < wheels.Length; i++){//扭矩力度wheels[i].motorTorque = InputManager.InputManagerment.vertical * (motorflaot / 2); //扭矩马力归半}}break;case EDriveType.allDrive://选择四驱if (InputManager.InputManagerment.vertical != 0) //当按下WS键时生效{for (int i = 0; i < wheels.Length; i++){//扭矩力度wheels[i].motorTorque = InputManager.InputManagerment.vertical * ( motorflaot / 4 ); //扭矩马力/4}}break;default:break;}}//水平轴方向管理(转向管理)public void HorizontalContolr(){if (InputManager.InputManagerment.horizontal > 0){//后轮距尺寸设置为1.5f ,轴距设置为2.55f ,radius 默认为6,radius 越大旋转的角度看起来越小wheels[0].steerAngle = Mathf.Rad2Deg * Mathf.Atan(2.55f / (radius + (1.5f / 2))) * InputManager.InputManagerment.horizontal;wheels[1].steerAngle = Mathf.Rad2Deg * Mathf.Atan(2.55f / (radius - (1.5f / 2))) * InputManager.InputManagerment.horizontal;}else if (InputManager.InputManagerment.horizontal < 0){wheels[0].steerAngle = Mathf.Rad2Deg * Mathf.Atan(2.55f / (radius - (1.5f / 2))) * InputManager.InputManagerment.horizontal;wheels[1].steerAngle = Mathf.Rad2Deg * Mathf.Atan(2.55f / (radius + (1.5f / 2))) * InputManager.InputManagerment.horizontal;}else{wheels[0].steerAngle = 0;wheels[1].steerAngle = 0;}}//车轮动画相关public  void WheelsAnimation(){for (int i = 0; i < wheels.Length ; i++){//获取当前空间的车轮位置 和 角度wheels[i].GetWorldPose(out wheelPosition, out wheelRotation);//赋值给wheelMesh[i].transform.position = wheelPosition;print(wheelRotation);wheelMesh[i].transform.rotation = wheelRotation * Quaternion .AngleAxis (90,Vector3 .forward );}}
}}}
}

🎶(B车辆优化——车身持续稳定的优化


WheelMove脚本 ——> CarMoveControl脚本 更改脚本名


😶‍🌫️速度属性实时转换


  • 每小时多少公里 和 每秒多少米的对应关系 ——1m/s = 3.6km/h

速度属性建议改成Int类型 ,float类型会上下浮动不准确

 //1m/s = 3.6km/hKm_H =(int)(rigidbody.velocity.magnitude * 3.6) ;Km_H = Mathf.Clamp( Km_H,0, 200 );   //油门速度为 0 到 200 Km/H之间
  • 相机测速 m/s
    在这里插入图片描述
  //相机监测实时速度Control = target.GetComponent<CarMoveControl>();speed = (int )Control.Km_H / 4;speed = Mathf.Clamp(0, 55,speed );   //对应最大200公里每小时
  • 添加四个轮子的实时速度,对应虚度属性,可以明显的观察四驱和二驱的汽车动力

在这里插入图片描述

    //车辆物理属性相关public void VerticalAttribute(){//1m/s = 3.6km/hKm_H =(int)(rigidbody.velocity.magnitude * 3.6) ;Km_H = Mathf.Clamp( Km_H,0, 200 );   //油门速度为 0 到 200 Km/H之间//显示每个轮胎的扭矩f_right = wheels[0].motorTorque;f_left  = wheels[1].motorTorque;b_right = wheels[2].motorTorque;b_left  = wheels[3].motorTorque;}

😶‍🌫️为车子添加下压力


知识百科: 什么是下压力
下压力是车在行进中空气在车体上下流速不一产生的,使空气的总压力指向地面从而增加车的抓地力.

速度越大,下压力越大,抓地更强,越不易翻车
在这里插入图片描述

  • 关键代码
  //-------------下压力添加-----------------//速度越大,下压力越大,抓地更强rigidbody.AddForce(-transform.up * downForceValue * rigidbody.velocity .magnitude );

😶‍🌫️质心的添加centerMess


知识百科:什么是质心?——质量中心
汽车制造商在设计汽车时会考虑质心的位置和重心高度,以尽可能减小质心侧偏角。 一些高性能汽车甚至会采用主动悬挂系统来控制车身侧倾,从而减小质心侧偏角,提高车辆的稳定性和操控性。

质量中心越贴下,越不容易翻
在这里插入图片描述

        //-------------质量中心同步----------------//质量中心越贴下,越不容易翻rigidbody.centerOfMass = CenterMass;
  • 手刹的添加
//手刹管理public void HandbrakControl(){if(InputManager.InputManagerment .handbanl ){     //后轮刹车wheels[2].brakeTorque  = brakVualue;wheels[3].brakeTorque  = brakVualue;}else{wheels[2].brakeTorque = 0;wheels[3].brakeTorque = 0;}}

😶‍🌫️轮胎的平滑度的显示


wheelhit.forwardSlip;用来观看刹车轮胎在滚动方向上打滑。加速滑移为负,制动滑为正
_______在这里插入图片描述

for (int i = 0; i < slip.Length; i++){WheelHit wheelhit;wheels[i].GetGroundHit(out wheelhit);slip[i] = wheelhit.forwardSlip; //轮胎在滚动方向上打滑。加速滑移为负,制动滑为正}               

🅰️

在这里插入图片描述
在这里插入图片描述


⭐【Unityc#专题篇】之c#进阶篇】

⭐【Unityc#专题篇】之c#核心篇】

⭐【Unityc#专题篇】之c#基础篇】

⭐【Unity-c#专题篇】之c#入门篇】

【Unityc#专题篇】—进阶章题单实践练习

⭐【Unityc#专题篇】—基础章题单实践练习

【Unityc#专题篇】—核心章题单实践练习


你们的点赞👍 收藏⭐ 留言📝 关注✅是我持续创作,输出优质内容的最大动力!


在这里插入图片描述


相关文章:

【Unity3D赛车游戏】【四】在Unity中添加阿克曼转向,下压力,质心会让汽车更稳定

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;元宇宙-秩沅 &#x1f468;‍&#x1f4bb; hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍&#x1f4bb; 本文由 秩沅 原创 &#x1f468;‍&#x1f4bb; 收录于专栏&#xff1a;Uni…...

Python爬虫requests判断请求超时并重新post/get发送请求

在使用Python爬虫中&#xff0c;你可以使用requestsimport requests #Python爬虫requests判断请求超时并重新post发送请求&#xff0c;proxies为代理 def send_request_post(url, data, headers , proxies , max_retries3, timeout5):retries 0while retries < max_retries…...

CSS中如何实现多列布局?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 多列布局&#xff08;Multi-column Layout&#xff09;⭐ column-count⭐ column-width⭐ column-gap⭐ column-rule⭐ column-span⭐ 示例⭐ 写在最后 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 记得点击上方或者右侧…...

【C++】string简单实用详解

本片要分享的内容是有关于string的知识&#xff0c;在这之前得介绍一下什么是STL&#xff1b; 目录 1.STL简单介绍 2. string简单介绍 3.string简单使用 3.1.string的定义 3.2.字符串的拼接 3.3.string的遍历 3.3.1.循环遍历 3.3.2.迭代器遍历 4.string的函数构造 1.…...

opencv 进阶16-基于FAST特征和BRIEF描述符的ORB(图像匹配)

在计算机视觉领域&#xff0c;从图像中提取和匹配特征的能力对于对象识别、图像拼接和相机定位等任务至关重要。实现这一目标的一种流行方法是 ORB&#xff08;Oriented FAST and Rotated Brief&#xff09;特征检测器和描述符。ORB 由 Ethan Rublee 等人开发&#xff0c;结合了…...

Unity 类Scene窗口相机控制

类Scene窗口相机控制 &#x1f354;效果 &#x1f354;效果 传送门&#x1f448;...

juc基础(三)

目录 一、读写锁 1、读写锁介绍 2、ReentrantReadWriteLock 3、例子 4、小结 二、阻塞队列 1、BlockingQueue 简介 2、BlockingQueue 核心方法 3、案例 4、常见的 BlockingQueue &#xff08;1&#xff09;ArrayBlockingQueue(常用) &#xff08;2&#xff09;Li…...

c语言函数指针和指针函数的区别,以及回调函数的使用。

函数指针是什么&#xff0c;函数指针本质也是指针&#xff0c;不过是指向函数的指针&#xff0c;存储的是函数的地址。 指针函数是什么,指针函数其实就是返回值是指针的函数&#xff0c;本质是函数。 函数指针是如何定义的呢&#xff0c;如下 void (*pfun)(int a,int b) 这…...

什么是服务端渲染?前后端分离的优点和缺点?

一.概念 服务端渲染简单点就是服务端直接返回给客户端一个完整的页面&#xff0c;也就是一个完整的html页面&#xff0c;这个页面上已经有数据了。说到这里你可能会觉得后端怎么写页面啊&#xff0c;而且服务端返回页面不是加载更慢吗&#xff1f;错了&#xff0c;因为我们现在…...

【Java】优化重复冗余代码的8种方式

文章目录 前言1. 抽取公用方法2. 抽工具类3. 反射4.泛型5. 继承与多态6.使用设计模式7.自定义注解(或者说AOP面向切面)8.函数式接口和Lambda表达式 前言 日常开发中&#xff0c;我们经常会遇到一些重复代码。大家都知道重复代码不好&#xff0c;它主要有这些缺点&#xff1a;可…...

rabbitmq卸载重新安装3.8版本

卸载之前的版本的rabbitmq 卸载rabbitmq 卸载前先停止rabbitmq服务 /usr/lib/rabbitmq/bin/rabbitmqctl stop查看rabbitmq安装的相关列表 yum list | grep rabbitmq卸载rabbitmq相关内容 yum -y remove rabbitmq-server.noarch 卸载erlang 查看erlang安装的相关列表 …...

MyBatis分页思想和特殊字符

目录 一、MyBatis分页思想 1.1 使用场景 1.2 代码演示 二、MyBatis特殊字符 2.1代码演示 一、MyBatis分页思想 1.1 使用场景 Mybatis分页应用场景&#xff1a; MyBatis是一个Java持久层框架&#xff0c;它提供了一种将SQL查询和结果映射到Java对象的简单方式。分页是MyBa…...

设计模式大白话——命令模式

命令模式 一、概述二、经典举例三、代码示例&#xff08;Go&#xff09;四、总结 一、概述 ​ 顾名思义&#xff0c;命令模式其实和现实生活中直接下命令的动作类似&#xff0c;怎么理解这个命令是理解命令模式的关键&#xff01;&#xff01;&#xff01;直接说结论是很不负责…...

[线程/C++(11)]线程池

文章目录 一、C实现线程池1. 头文件2. 测试部分 二、C11实现线程池1. 头文件2. 测试部分 一、C实现线程池 1. 头文件 #define _CRT_SECURE_NO_WARNINGS #pragma once #include<iostream> #include<string.h> #include<string> #include<pthread.h> #…...

VR防地质灾害安全教育:增强自然灾害知识,提高自我保护意识

VR防地质灾害安全教育系统是一种虚拟仿真技术&#xff0c;可以通过虚拟现实技术模拟地震、泥石流、滑坡等地质灾害的发生和应对过程&#xff0c;帮助人们提高应对突发自然灾害的能力。这种系统的优势在于可以增强自然灾害知识&#xff0c;提高自我保护意识&#xff0c;锻炼人们…...

Mybatis多对多查询案例!

在MyBatis中执行多对多查询需要使用两个主要表和一个连接表&#xff08;通常称为关联表&#xff09;来演示。在这个示例中&#xff0c;我们将使用一个示例数据库模型&#xff0c;其中有三个表&#xff1a;students、courses 和 student_courses&#xff0c;它们之间建立了多对多…...

Android OpenCV(七十五): 看看刚”转正“的条形码识别

前言 2021年,我们写过一篇《OpenCV 条码识别 Android 平台实践》,当时的条形码识别模块位于 opencv_contrib 仓库,但是 OpenCV 4.8.0 版本开始, 条形码识别模块已移动到 OpenCV 主仓库,至此我们无需自行编译即可轻松地调用条形码识别能力。 Bar code detector and decoder…...

数据结构——布隆计算器

文章目录 1.什么是布隆过滤器&#xff1f;2.布隆过滤器的原理介绍3.布隆过滤器使用场景4.通过 Java 编程手动实现布隆过滤器5.利用Google开源的 Guava中自带的布隆过滤器6.Redis 中的布隆过滤器6.1介绍6.2使用Docker安装6.3常用命令一览6.4实际使用 1.什么是布隆过滤器&#xf…...

金融学复习博迪(第6-9章)

第6章 投资项目分析 学习目的&#xff1a;解释资本预算&#xff1b;资本预算基本法则 资本预算过程包含三个基本要素&#xff1a; 一提出针对投资项目的建议 一对这些建议进行评价 一决定接受和拒绝哪些建议 6.1项目分析的特性 资本预算的过程中的基本单位是单个的投资项目。投…...

解决idea登录github copilot报错问题

试了好多方案都没用&#xff0c;但是这个有用&#xff0c; 打开idea-help-edit custonm vm options 然后在这个文件里面输入 -Dcopilot.agent.disabledtrue再打开 https://github.com/settings/copilot 把这个设置成allow&#xff0c;然后重新尝试登录copilot就行就行 解决方…...

什么是Flex布局?请列举一些Flex布局的常用属性。

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ Flex布局&#xff08;Flexible Box Layout&#xff09;⭐ Flex布局的常用属性⭐ 写在最后 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 记得点击上方或者右侧链接订阅本专栏哦 几何带你启航前端之旅 欢迎来到前端入门之…...

React + TypeScript + antd 常见开发场景

时间戳转格式 // 获取当前时间戳&#xff08;示例&#xff09; const timestamp Date.now(); // 或者使用特定的时间戳值// 创建一个新的Date对象&#xff0c;并传入时间戳 const date new Date(timestamp);// 获取年、月、日的值 const year date.getFullYear(); const mon…...

前端基础踩坑记录

前言&#xff1a;在做vue项目时&#xff0c;有时代码没有报错&#xff0c;但运行时却各种问题&#xff0c;没有报错排查起来就很费劲&#xff0c;本人感悟&#xff1a;写前端&#xff0c;需要好的眼神&#xff01;&#xff01;&#xff01;谨以此博客记录下自己的踩坑点。 一、…...

k8s删除pod镜像没响应marking for deletion pod TaintManagerEviction

使用命令强制删除 Pod的状态为"Marking for deletion"表示该Pod正在被标记为待删除状态&#xff0c;但实际上并没有被删除。这可能是因为以下原因之一&#xff1a; 删除操作被阻塞&#xff1a;可能是由于某些资源或容器正在使用该Pod&#xff0c;导致删除操作被阻塞…...

Nginx 使用 lua-nginx-module 来获取post请求中的request和response信息

如果想要在nginx中打印出 http request 的所有 header&#xff0c;需要在编译nginx时开启 1、安装编译所需的依赖 apt-get install build-essential libpcre3 libpcre3-dev zlib1g zlib1g-dev libssl-dev2、创建下载路径 mkdir -p /opt/download3、下载所需的文件 # 不要下载…...

【Opencv】三维重建之cv::recoverPose()函数(1)

官网链接 从估计的本质矩阵和两幅图像中的对应点恢复相机之间的旋转和平移&#xff0c;使用光束法则进行检验。返回通过检验的内点数目。 #include <opencv2/calib3d.hpp>int cv::recoverPose ( InputArray E, InputArray points1, InputArray points2, InputArray …...

Perl兼容正则表达式函数-PHP8知识详解

在php8中有两类正则表达式函数&#xff0c;一类是perl兼容正则表达式函数&#xff0c;另一类是posix扩展正则表达式函数。二者区别不大&#xff0c;我们推荐使用Perl兼容正则表达式函数。 1、使用正则表达式对字符串进行匹配 用正则表达式对目标字符串进行匹配是正则表达式的主…...

Python处理空值NaN

fork_address_tempread_excel_column_to_list(./eqp_info.xls,Sheet1,车辆地址)for i in fork_address_temp:print(type(i))fork_address[0 if address nan else address for address in fork_address_temp]fork_address结果 <class float><class float><class…...

软件机器人助力交通运输局数据录入,实现高效管理

随着科技的迅速发展&#xff0c;许多传统的行业正在寻求通过科技创新优化工作流程、提升效率。在这样的大背景下&#xff0c;交通运输部门也开始注重引入科技手段改善工作流程。博为小帮软件机器人正逐步改变着交通运输局的工作方式。 软件机器人&#xff1a;交通管理的利器 博…...

时序分解 | MATLAB实现基于SGMD辛几何模态分解的信号分解分量可视化

时序分解 | MATLAB实现基于SGMD辛几何模态分解的信号分解分量可视化 目录 时序分解 | MATLAB实现基于SGMD辛几何模态分解的信号分解分量可视化效果一览基本介绍程序设计参考资料 效果一览 基本介绍 SGMD分解算法&#xff08;辛几何模态分解&#xff09;&#xff0c;分解结果可视…...