当前位置: 首页 > news >正文

tensorRT安装

官方指导文档:Installation Guide :: NVIDIA Deep Learning TensorRT Documentation

适配很重要!!!! 需要cuda, cuDNN, tensorRT三者匹配。我的cuda11.3 所以对应的cuDNN和tensorRT下载的是如下版本:

cudnn-linux-x86_64-8.9.4.25_cuda11-archive.tar.xz

TensorRT-8.0.3.4.Linux.x86_64-gnu.cuda-11.3.cudnn8.2.tar.gz

服务器直接下载,用wget下,但是我没有成功,下了30多k的啥东西我也不知道,所以我是直接本地下载,然后scp传上去的。

解压cuDNN和tensorRT:

tar -xvf cudnn-linux-x86_64-8.9.4.25_cuda11-archive.tar.xz
tar -xvf TensorRT-8.0.3.4.Linux.x86_64-gnu.cuda-11.3.cudnn8.2.tar.gz

依次执行下面三行代码:

$ sudo cp cudnn-*-archive/include/cudnn*.h /usr/local/cuda/include 
$ sudo cp -P cudnn-*-archive/lib/libcudnn* /usr/local/cuda/lib64 
$ sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn*

第一行: 将 cuDNN 库的头文件复制到 CUDA 的包含目录下

第二行:将 cuDNN 库的动态链接库复制到 CUDA 的库目录下

第三行:赋予读取权限给头文件和库文件。

cuDNN就算完事了,查看cuDNN版本:

因为是最新的,所以版本信息在cudnn_version.h里面,不在cudnn.h里

cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2 这个什么也不会输出

cat /usr/local/cuda/include/cudnn_version.h | grep CUDNN_MAJOR -A 2

下面就是安装tensorRT了。 

查看文件夹:

ls TensorRT-8.0.3.4

先添加环境变量 ,运行成功就ok:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/path/to/TensorRT-8.0.3.4/lib

然后进入Python文件夹,我的python是3.8.10:

:~/autodl-tmp/datav/TensorRT-8.0.3.4/python# ls
tensorrt-8.0.3.4-cp35-none-linux_x86_64.whl  tensorrt-8.0.3.4-cp38-none-linux_x86_64.whl
tensorrt-8.0.3.4-cp36-none-linux_x86_64.whl  tensorrt-8.0.3.4-cp39-none-linux_x86_64.whl
tensorrt-8.0.3.4-cp37-none-linux_x86_64.whl

查看对应的文件夹下内置的python文件,cp38就是3.8的 复制对应的文件名:

:~/autodl-tmp/datav/TensorRT-8.0.3.4/python# python3 -m pip install tensorrt-8.0.3.4-cp38-none-linux_x86_64.whl
Looking in indexes: http://mirrors.aliyun.com/pypi/simple
Processing ./tensorrt-8.0.3.4-cp38-none-linux_x86_64.whl
Installing collected packages: tensorrt
Successfully installed tensorrt-8.0.3.4

因为我用pytorch,不用tensorflow 所以不用安装uff里面的东西

进入graphsurgeon文件夹安装对应的文件:

(base) root@autodl-container-8f5011bc52-3422f594:~/autodl-tmp/datav/TensorRT-8.0.3.4/graphsurgeon# ls
graphsurgeon-0.4.5-py2.py3-none-any.whl
(base) root@autodl-container-8f5011bc52-3422f594:~/autodl-tmp/datav/TensorRT-8.0.3.4/graphsurgeon# python3 -m pip install graphsurgeon-0.4.5-py2.py3-none-any.whl
Looking in indexes: http://mirrors.aliyun.com/pypi/simple
Processing ./graphsurgeon-0.4.5-py2.py3-none-any.whl
Installing collected packages: graphsurgeon
Successfully installed graphsurgeon-0.4.5

进入onnx_graphsurgeon文件夹安装对应的文件:

(base) root@autodl-container-8f5011bc52-3422f594:~/autodl-tmp/datav/TensorRT-8.0.3.4/onnx_graphsurgeon# ls
onnx_graphsurgeon-0.3.10-py2.py3-none-any.whl
(base) root@autodl-container-8f5011bc52-3422f594:~/autodl-tmp/datav/TensorRT-8.0.3.4/onnx_graphsurgeon# python3 -m pip install onnx_graphsurgeon-0.3.10-py2.py3-none-any.whl
Looking in indexes: http://mirrors.aliyun.com/pypi/simple
Processing ./onnx_graphsurgeon-0.3.10-py2.py3-none-any.whl
Requirement already satisfied: numpy in /root/miniconda3/lib/python3.8/site-packages (from onnx-graphsurgeon==0.3.10) (1.22.4)
Collecting onnxDownloading http://mirrors.aliyun.com/pypi/packages/c4/4a/cb138cbffe65c7c6a4c650e01fbc1c1e1c143797252fc128e4694276c2cc/onnx-1.14.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.6 MB)|████████████████████████████████| 14.6 MB 5.5 MB/s 
Collecting protobuf>=3.20.2Downloading http://mirrors.aliyun.com/pypi/packages/4c/87/59648989ad7f5ba6fe3c7f8abc555183f28559b6f6cd14ad17a3f0d3094f/protobuf-4.24.1-cp37-abi3-manylinux2014_x86_64.whl (311 kB)|████████████████████████████████| 311 kB 94.7 MB/s 
Requirement already satisfied: typing-extensions>=3.6.2.1 in /root/miniconda3/lib/python3.8/site-packages (from onnx->onnx-graphsurgeon==0.3.10) (4.2.0)
Installing collected packages: protobuf, onnx, onnx-graphsurgeonAttempting uninstall: protobufFound existing installation: protobuf 3.19.4Uninstalling protobuf-3.19.4:Successfully uninstalled protobuf-3.19.4

这就完事了。测试一下:

将头文件路径添加进配置文件去:

"includePath": ["${workspaceFolder}/**","/usr/local/cuda-11.3/targets/x86_64-linux/include/**","/usr/include/opencv4/**","/root/autodl-tmp/datav/TensorRT-8.0.3.4/include/**"  // 添加路径到这里],

头文件和库文件添加到makefile文件的头文件和库文件里去:

include_paths := /usr/local/cuda-11.3/targets/x86_64-linux/include \/usr/include/opencv4 /usr/include/opencv4/opencv \/root/autodl-tmp/datav/TensorRT-8.0.3.4/include/library_paths := /usr/local/cuda-11.3/targets/x86_64-linux/lib \/root/autodl-tmp/datav/TensorRT-8.0.3.4/lib

简单写一下:

#include <NvInfer.h>
#include <cuda_runtime.h>
#include <iostream>
#include <stdio.h>int main(){std::cout << "搞定收工!!" << std::endl;return 0;
}

make一波:

完美。搞定了 直接起飞🛫 

相关文章:

tensorRT安装

官方指导文档&#xff1a;Installation Guide :: NVIDIA Deep Learning TensorRT Documentation 适配很重要&#xff01;&#xff01;&#xff01;&#xff01; 需要cuda, cuDNN, tensorRT三者匹配。我的cuda11.3 所以对应的cuDNN和tensorRT下载的是如下版本&#xff1a; cud…...

电脑重装+提升网速

https://www.douyin.com/user/self?modal_id7147216653720341767&showTabfavorite_collectionhttps://www.douyin.com/user/self?modal_id7147216653720341767&showTabfavorite_collection 零封有哈数的主页 - 抖音 (douyin.com)https://www.douyin.com/user/self?…...

Modelica由入门到精通—为什么要学习Modelica语言

1.为什么要学习Modelica语言 本人正在研究Modelica 多领域统一建模仿真语言&#xff0c;特此做学习入门介绍&#xff0c;希望可以帮助需要的小伙伴。 文章目录 1.为什么要学习Modelica语言一、背景二、系统建模与仿真2.1 系统仿真与系统模型2.2 仿真价值与可靠性 三、物理建模…...

opencv 进阶20-随机森林示例

OpenCV中的随机森林是一种强大的机器学习算法&#xff0c;旨在解决分类和回归问题。随机森林使用多个决策树来进行预测&#xff0c;每个决策树都是由随机选择的样本和特征组成的。在分类问题中&#xff0c;随机森林通过投票来确定最终的类别&#xff1b;在回归问题中&#xff0…...

Spring Boot进阶(58):集成PostgreSQL数据库及实战使用 | 万字长文,超级详细

1. 前言&#x1f525; PostgreSQL是一种广泛使用的开源关系型数据库&#xff0c;具有可靠性高、性能优异、拥有丰富的数据类型和扩展等优点&#xff0c;越来越多的企业和开发者开始使用它来存储和管理数据。而Spring Boot是一种快速开发的框架&#xff0c;可以简化开发过程并提…...

Java | 使用ServerSocket查找TCP可用端口

关注&#xff1a;CodingTechWork 引言 在项目开发中&#xff0c;有一个程序是专门给服务下发tcp端口占用的&#xff0c;但是tcp端口有时候会被其他服务给占用&#xff0c;此时端口就会冲突。本文提供一个工具类进行端口占用判断并返回可用端口。 代码 工具类 Slf4j public …...

【深入浅出C#】章节 9: C#高级主题:LINQ查询和表达式

C#高级主题涉及到更复杂、更灵活的编程概念和技术&#xff0c;能够让开发者更好地应对现代软件开发中的挑战。其中&#xff0c;LINQ查询和表达式是C#高级主题中的一项关键内容&#xff0c;具有以下重要性和优势&#xff1a; 数据处理和操作&#xff1a; 在现代软件中&#xff…...

【Git】git clone --depth 1 浅克隆

问题 PycharmProjects git clone git Cloning into risk-package... remote: Counting objects: 576, done. error: pack-objects died of signal 947/574) error: git upload-pack: git-pack-objects died with error. fatal: git upload-pack: aborting due to possible r…...

搭建 Gitlab

当设置和配置 GitLab 实例并执行诸如创建群组、项目、用户和上传代码等操作时&#xff0c;涉及到多个步骤&#xff0c;每个步骤都有特定的目的。让我们逐步解释每个步骤并说明其背后的原因&#xff1a; 安装必需的软件&#xff1a; yum install -y curl policycoreutils-python…...

CTFhub-sqli注入-报错注入

用到的函数 updatexml(1&#xff0c; &#xff0c;1) concat(0x7e, ,0x7e) group_concat(目标值) right(&#xff0c;32) 1 1 1 union select updatexml(1,concat(0x7e,database(),0x7e),1) 1 union select updatexml(1,concat(0x7e,(select(group_concat(ta…...

中国人民大学与加拿大女王大学金融硕士让金融界短暂迷茫的你发现新的方向

此刻金融职场的你已经站在了金融金字塔的哪个层级&#xff1f;是正在金融界不断的改变自己&#xff0c;迎接着一个又一个的挑战成为了职场精英&#xff1f;还是转行的想法不断敲打着你&#xff0c;但是又不知道自己该干什么&#xff0c;能干什么&#xff0c;发现自己的职业核心…...

PHPEXCEL 导出excel

$styleArray [alignment > [horizontal > Alignment::HORIZONTAL_CENTER,vertical > Alignment::VERTICAL_CENTER],];$border_style [borders > [allborders > [style > \PHPExcel_Style_Border::BORDER_THIN ,//细边框]]];$begin_date $request->beg…...

Elasticsearch简介及安装

&#x1f353; 简介&#xff1a;java系列技术分享(&#x1f449;持续更新中…&#x1f525;) &#x1f353; 初衷:一起学习、一起进步、坚持不懈 &#x1f353; 如果文章内容有误与您的想法不一致,欢迎大家在评论区指正&#x1f64f; &#x1f353; 希望这篇文章对你有所帮助,欢…...

Python 密码破解指南:10~14

协议&#xff1a;CC BY-NC-SA 4.0 译者&#xff1a;飞龙 本文来自【OpenDocCN 饱和式翻译计划】&#xff0c;采用译后编辑&#xff08;MTPE&#xff09;流程来尽可能提升效率。 收割 SB 的人会被 SB 们封神&#xff0c;试图唤醒 SB 的人是 SB 眼中的 SB。——SB 第三定律 十、加…...

Spring、SpringMVC、SpringBoot三者的区别

目录 Spring是什么&#xff1f; SpringMVC是什么&#xff1f; SpringBoot是什么&#xff1f; Spring、SpringMVC、SpringBoot三者之间的关系 Spring是什么&#xff1f; Spring是一个开源的应用程序框架&#xff0c;它提供了一种简易的开发方式&#xff0c;通过依赖注入和面…...

探索PDF校对:为何这是现代数字文档的关键步骤

在今日的数字化浪潮中&#xff0c;文档的创建与分享从未如此频繁。尤其是PDF&#xff0c;作为一个普遍接受的标准文件格式&#xff0c;其在企业、学术和日常生活中的应用已经无处不在。但随之而来的挑战是如何确保文档的准确性和专业性。让我们深入探索PDF校对的重要性以及它为…...

linux 同时kill杀死多进程实践

使用场景 当程序中有使用到多进程且进程数较多的情况&#xff0c;如下图&#xff0c;且需要通过控制台杀死所有的 GSM_run.py 的进程时&#xff0c;利用 kill 命令一个一个的去结束进程是及其耗时且繁琐的&#xff0c;这时就需要我们的kill多进程的命令工作了。 批量 Kill 进程…...

全流程R语言Meta分析核心技术

Meta分析是针对某一科研问题&#xff0c;根据明确的搜索策略、选择筛选文献标准、采用严格的评价方法&#xff0c;对来源不同的研究成果进行收集、合并及定量统计分析的方法&#xff0c;最早出现于“循证医学”&#xff0c;现已广泛应用于农林生态&#xff0c;资源环境等方面。…...

打家劫舍00

题目链接 打家劫舍 题目描述 注意点 如果两间相邻的房屋在同一晚上被小偷闯入&#xff0c;系统会自动报警0 < nums[i] < 400 解答思路 最初想的是使用深度优先遍历&#xff0c;到达任意一个位置时&#xff0c;小偷想要偷窃最高金额&#xff0c;一定要选择后面第2个房…...

​LeetCode解法汇总1267. 统计参与通信的服务器

目录链接&#xff1a; 力扣编程题-解法汇总_分享记录-CSDN博客 GitHub同步刷题项目&#xff1a; https://github.com/September26/java-algorithms 原题链接&#xff1a;力扣&#xff08;LeetCode&#xff09;官网 - 全球极客挚爱的技术成长平台 描述&#xff1a; 这里有一幅…...

【Axure高保真原型】引导弹窗

今天和大家中分享引导弹窗的原型模板&#xff0c;载入页面后&#xff0c;会显示引导弹窗&#xff0c;适用于引导用户使用页面&#xff0c;点击完成后&#xff0c;会显示下一个引导弹窗&#xff0c;直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...

eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)

说明&#xff1a; 想象一下&#xff0c;你正在用eNSP搭建一个虚拟的网络世界&#xff0c;里面有虚拟的路由器、交换机、电脑&#xff08;PC&#xff09;等等。这些设备都在你的电脑里面“运行”&#xff0c;它们之间可以互相通信&#xff0c;就像一个封闭的小王国。 但是&#…...

Ubuntu系统下交叉编译openssl

一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机&#xff1a;Ubuntu 20.04.6 LTSHost&#xff1a;ARM32位交叉编译器&#xff1a;arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

基于当前项目通过npm包形式暴露公共组件

1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹&#xff0c;并新增内容 3.创建package文件夹...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术&#xff0c;说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号&#xff08;调制&#xff09; 把信息从信号中抽取出来&am…...

让AI看见世界:MCP协议与服务器的工作原理

让AI看见世界&#xff1a;MCP协议与服务器的工作原理 MCP&#xff08;Model Context Protocol&#xff09;是一种创新的通信协议&#xff0c;旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天&#xff0c;MCP正成为连接AI与现实世界的重要桥梁。…...

Android15默认授权浮窗权限

我们经常有那种需求&#xff0c;客户需要定制的apk集成在ROM中&#xff0c;并且默认授予其【显示在其他应用的上层】权限&#xff0c;也就是我们常说的浮窗权限&#xff0c;那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...

CRMEB 中 PHP 短信扩展开发:涵盖一号通、阿里云、腾讯云、创蓝

目前已有一号通短信、阿里云短信、腾讯云短信扩展 扩展入口文件 文件目录 crmeb\services\sms\Sms.php 默认驱动类型为&#xff1a;一号通 namespace crmeb\services\sms;use crmeb\basic\BaseManager; use crmeb\services\AccessTokenServeService; use crmeb\services\sms\…...

【JavaSE】多线程基础学习笔记

多线程基础 -线程相关概念 程序&#xff08;Program&#xff09; 是为完成特定任务、用某种语言编写的一组指令的集合简单的说:就是我们写的代码 进程 进程是指运行中的程序&#xff0c;比如我们使用QQ&#xff0c;就启动了一个进程&#xff0c;操作系统就会为该进程分配内存…...