当前位置: 首页 > news >正文

全流程R语言Meta分析核心技术应用

Meta分析是针对某一科研问题,根据明确的搜索策略、选择筛选文献标准、采用严格的评价方法,对来源不同的研究成果进行收集、合并及定量统计分析的方法,最早出现于“循证医学”,现已广泛应用于农林生态,资源环境等方面。R语言拥有完整有效的数据处理、统计分析与保存机制,可以对数据直接进行分析和显示,命令格式简单、结果可读性强,包含众多针对Meta分析软件包,是进行Meta整合分析及评价的有效平台。课程从文献计量分析研究热点变化寻找科学问题R-Meta多手段全流程分析与Meta高级绘图多层次分层嵌套模型构建与Meta回归诊断贝叶斯网络、MCMC参数优化及不确定性分析Meta数据缺失值处理的六种方法与结果可靠性分析Meta加权机器学习与非线性Meta分析等方面讲解,每个专题,每一部分结合多个典型案例实践,深受众多学员好评。

点击查看原文icon-default.png?t=N6B9https://mp.weixin.qq.com/s?__biz=Mzg2NDYxNjMyNA==&mid=2247542347&idx=2&sn=53542950c873477ce13c00cf101a9180&chksm=ce64cca0f91345b69320df320e015a03e1f86ff3f3482b553f329cb1e76bb00181ad87ff5e7e&token=1639767299&lang=zh_CN#rd

图片

 

专题一

Meta分析的选题与检索

1、Meta分析的选题与文献检索

  1. 什么是Meta分析
  2. Meta分析的选题策略
  3. 精确检索策略,如何检索全、检索准
  4. 文献的管理与清洗,如何制定文献纳入排除标准
  5. 文献数据获取技巧,研究课题探索及科学问题的提出
  6. 文献计量分析CiteSpace、VOSViewer、R bibliometrix及研究热点分析

专题二

Meta分析与R语言基础

2Meta分析的常用软件/R语言基础及统计学基础

  1. R语言做Meta分析的优势及其《Nature》、《Science》经典案例应用
  2. R语言基本操作与数据清洗方法
  3. 统计学基础和常用统计量计算(sd\se\CI)、三大检验(T检验、卡方检验和F检验)
  4. R语言Meta分析常用包及相关插件介绍与安装

从自编程计算到调用Meta包(meta、metafor、dmetar、esc、metasens、metamisc、meta4diag、gemtc、robvis、netmeta、brms等),全程分析如何进行meta计算、meta诊断、贝叶斯meta、网状meta、亚组分析、meta回归及作图。

专题三

R语言Meta分析与作图

3R语言Meta效应值计算

  1. R语言Meta分析的流程
  2. 各类meta效应值计算、自编程序和调用函数的对比

连续资料的RR、MD与SMD

分类资料的RR和OR

  1. R语言meta包和metafor包的使用
  2. 如何用R基础包和ggplot2绘制漂亮的森林图

 

专题四

R语言Meta回归分析

4R语言Meta分析与混合效应模型构建

  1. Meta分析的权重计算
  2. Meta分析中的固定效应、随机效应
  3. 如何对Meta模型进行统计检验和构建嵌套模型、分层模型(混合效应)
  4. Meta回归和普通回归、混合效应模型的对比及结果分析
  5. 使用Rbase和ggplot2绘制Meta回归图

 

 

专题五

R语言Meta诊断分析

5R语言Meta诊断进阶

  1. Meta诊断分析(t2、I2、H2、R2、Q、QE、QM等统计量)
  2. 异质性检验及发表偏移、漏斗图、雷达图、发表偏移统计检验
  3. 敏感性分析、留一法、增一法、Gosh图
  4. 风险分析、失安全系数计算
  5. Meta模型比较和模型的可靠性评价
  6. Bootstrap重采样方法评估模型的不确定性
  7. 如何使用多种方法对文献中的SD、样本量等缺失值的处理

 

专题六

R语言Meta分析的不确定性

6R语言Meta分析的不确定性

  1. 网状Meta分析
  2. 贝叶斯理论和蒙特拉罗马尔可夫链MCMC
  3. 如何使用MCMC优化普通回归模型和Meta模型参数
  4. R语言贝叶斯工具Stan、JAGS和brms
  5. 贝叶斯Meta分析及不确定性分析

 

 

专题七

机器学习在Meta分析中的应用

7机器学习在Meta分析中的应用

  1. 机器学习基础以及Meta机器学习的优势
  2. Meta加权随机森林(MetaForest)的使用
  3. 使用Meta机器学习和传统机器学习对文献中的大数据训练与测试
  4. 如何判断Meta机器学习使用随机效应还是固定效应以及超参数的优化
  5. 使用Meta机器学习进行驱动因子分析、偏独立分析PDP

专题八

讨论与答疑

1、练习

2、讨论与答疑

R语言混合效应(多水平层次嵌套)模型技术应用与及混合效应模型贝叶斯

 R语言与作物模型(以DSSAT模型为例)融合应用高级实战技术应用

 最新基于R语言结构方程模型分析与实践技术应用

基于R语言地理加权回归、主成份分析、判别分析等空间异质性数据分析实践技术应用

【高阶版】R语言空间分析、模拟预测与可视化高级应用

如何利用python机器学习解决空间模拟与时间预测问题及经典案例分析实践技术

相关文章:

全流程R语言Meta分析核心技术应用

Meta分析是针对某一科研问题,根据明确的搜索策略、选择筛选文献标准、采用严格的评价方法,对来源不同的研究成果进行收集、合并及定量统计分析的方法,最早出现于“循证医学”,现已广泛应用于农林生态,资源环境等方面。…...

Go并发可视化解释 - Select语句

昨天,我发布了一篇文章,用可视化的方式解释了Golang中通道(Channel)的工作原理。如果你对通道的理解仍然存在困难,最好呢请在阅读本文之前先查看那篇文章。作为一个快速的复习:Partier、Candier 和 Stringe…...

在线SM4(国密)加密解密工具

在线SM4(国密)加密解密工具...

golang的类型断言语法

例子1 在 Go 中,err.(interface{ Timeout() bool }) 是一个类型断言语法。它用于检查一个接口类型的变量 err 是否实现了一个带有 Timeout() bool 方法的接口。 具体而言,该类型断言的语法如下: if v, ok : err.(interface{ Timeout() boo…...

提速换挡 | 至真科技用技术打破业务壁垒,助力出海破局增长

各个行业都在谈出海,但真正成功的又有多少? 李宁出海十年海外业务收入占比仅有1.3%,走出去战略基本失败。 京东出海业务磕磕绊绊,九年过去国际化业务至今在财报上都不配拥有姓名。 几百万砸出去买量,一点水花都没有…...

第3篇:vscode搭建esp32 arduino开发环境

第1篇:Arduino与ESP32开发板的安装方法 第2篇:ESP32 helloword第一个程序示范点亮板载LED 1.下载vscode并安装 https://code.visualstudio.com/ 运行VSCodeUserSetup-x64-1.80.1.exe 2.点击扩展,搜索arduino,并点击安装 3.点击扩展设置,配置arduino…...

Apache Shiro是什么

特点 Apache Shiro是一个强大且易用的Java安全框架,用于身份验证、授权、会话管理和加密。它的设计目标是简化应用程序的安全性实现,使开发人员能够更轻松地处理各种安全性问题,从而提高应用程序的安全性和可维护性。下面是一些Apache Shiro的关键特点和概念: 特点和概念…...

Socket基本原理

一、简单介绍 Socket,又称套接字,是Linux跨进程通信(IPC,Inter Process Communication)方式的一种。相比于其他IPC方式,Socket牛逼在于可做到同一台主机内跨进程通信,不同主机间的跨进程通信。…...

Docker容器:本地私有仓库、harbor私有仓库部署与管理

文章目录 Docker容器:本地私有仓库、harbor私有仓库部署与管理一.本地私有仓库1.本地私有仓库概述2.搭建本地私有仓库3.容器重启策略简介 二.harbor私有仓库部署与管理1.什么是harbor2.Harbor的特性3、Harbor的构成4.Harbor私有仓库架构及数据流向5.harbor部署及配置…...

Mobx在非react组件中修改数据,在ts/js中修改数据实现响应式更新

我们都之前在封装mobx作为数据存储的时候,使用到了useContext作为包裹,将store变成了一个hooks使用,封装代码: import React from react import UserInfo from ./user import Setting from ./seting import NoteStore from ./noteclass Stor…...

什么是异步编程?什么是回调地狱(callback hell)以及如何避免它?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 异步编程⭐ 回调地狱(Callback Hell)⭐ 如何避免回调地狱1. 使用Promise2. 使用async/await3. 模块化和分离 ⭐ 写在最后 ⭐ 专栏简介 前端入门之旅:探索Web开发的奇妙世界 记得点击上方或者右侧链接订…...

Java8 Stream流常见操作--持续更新中

创建新数组 List<Fruit> newList fruits.stream().map(f -> new Fruit(f.getId(), f.getName() "s", f.getCountry())).collect(Collectors.toList())筛选数组 Map<Boolean, List<TransferData>> preAvg list.stream().collect(Collectors…...

【Linux】多线程概念线程控制

文章目录 多线程概念Linux下进程和线程的关系pid本质上是轻量级进程id&#xff0c;换句话说&#xff0c;就是线程IDLinux内核是如何创建一个线程的线程的共享和独有线程的优缺点 线程控制POSIX线程库线程创建线程终止线程等待线程分离 多线程概念 Linux下进程和线程的关系 在…...

Qt --- 自定义提示框 类似QMessagebox

QMessageBox::information(NULL, QString("title"), QString("I am information")); 以下是自定义提示框的代码&#xff0c;有图有真相&#xff01;提示框大部分都采用模态的形式&#xff0c;关于模态也不再多提&#xff01;所以父类为QDialog&#xff0c;…...

Redis 分布式锁与 Redlock 算法实现

Redis 分布式锁与 Redlock 算法实现 一、简介1. Redis的分布式锁2. 分布式锁的实现原理 二、Redis 分布式锁使用场景1. 分布式系统中数据资源的互斥访问2. 分布式环境中多个节点之间的协作3. 常见场景及应用 三、Redlock算法的原理与实现1. Redlock算法的背景2. Redlock算法的原…...

【附安装包】Inventor2024安装教程 机械制图|三维制图

软件下载 软件&#xff1a;Inventor版本&#xff1a;2024语言&#xff1a;简体中文大小&#xff1a;5.61G安装环境&#xff1a;Win11/Win10/Win8/Win7硬件要求&#xff1a;CPU2.5GHz 内存8G(或更高&#xff09;下载通道①百度网盘丨64位下载链接&#xff1a;https://pan.baidu…...

c++ 判断基类指针指向的真实对象类型

在 c 面向对象使用中&#xff0c;我们常常会定义一个基类类型的指针&#xff0c;在运行过程中&#xff0c;这个指针可能指向一个基类类型的对象&#xff0c;也可能指向的是其子类类型的对象&#xff0c;那现在问题来了&#xff0c;我们如何去判断这个指针到底执行了一个什么类型…...

退出屏保前玩一把游戏吧!webBrowser中网页如何调用.NET方法

本文主要以 HackerScreenSaver 新功能的开发经历介绍 webBrowser中网页如何调用.NET方法的过程。 1. 背景 之前开源了一款名为 HackerScreenSaver 的 Windows 屏保程序。该程序具有模拟黑客炫酷界面的特点&#xff0c;用户可以将自定义的网页作为锁屏界面。不久前&#xff0c;…...

hive-列转行

转成 select customer_code,product_type from temp.temp_xx LATERAL VIEW explode(SPLIT(product_types,,)) table_tmp AS product_type where customer_code K100515182...

【网络】IP网络层和数据链路层

IP协议详解 1.概念 1.1 四层模型 应用层&#xff1a;解决如何传输数据&#xff08;依照什么格式/协议处理数据&#xff09;的问题传输层&#xff1a;解决可靠性问题网络层&#xff1a;数据往哪里传&#xff0c;怎么找到目标主机数据链路层&#xff08;物理层&#xff09;&…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑&#xff1a;陈萍萍的公主一点人工一点智能 未来机器人的大脑&#xff1a;如何用神经网络模拟器实现更智能的决策&#xff1f;RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战&#xff0c;在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

vue3 字体颜色设置的多种方式

在Vue 3中设置字体颜色可以通过多种方式实现&#xff0c;这取决于你是想在组件内部直接设置&#xff0c;还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法&#xff1a; 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...

mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包

文章目录 现象&#xff1a;mysql已经安装&#xff0c;但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时&#xff0c;可能是因为以下几个原因&#xff1a;1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...

图表类系列各种样式PPT模版分享

图标图表系列PPT模版&#xff0c;柱状图PPT模版&#xff0c;线状图PPT模版&#xff0c;折线图PPT模版&#xff0c;饼状图PPT模版&#xff0c;雷达图PPT模版&#xff0c;树状图PPT模版 图表类系列各种样式PPT模版分享&#xff1a;图表系列PPT模板https://pan.quark.cn/s/20d40aa…...

3-11单元格区域边界定位(End属性)学习笔记

返回一个Range 对象&#xff0c;只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意&#xff1a;它移动的位置必须是相连的有内容的单元格…...

重启Eureka集群中的节点,对已经注册的服务有什么影响

先看答案&#xff0c;如果正确地操作&#xff0c;重启Eureka集群中的节点&#xff0c;对已经注册的服务影响非常小&#xff0c;甚至可以做到无感知。 但如果操作不当&#xff0c;可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...

Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?

在大数据处理领域&#xff0c;Hive 作为 Hadoop 生态中重要的数据仓库工具&#xff0c;其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式&#xff0c;很多开发者常常陷入选择困境。本文将从底…...

Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?

Redis 的发布订阅&#xff08;Pub/Sub&#xff09;模式与专业的 MQ&#xff08;Message Queue&#xff09;如 Kafka、RabbitMQ 进行比较&#xff0c;核心的权衡点在于&#xff1a;简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...

JAVA后端开发——多租户

数据隔离是多租户系统中的核心概念&#xff0c;确保一个租户&#xff08;在这个系统中可能是一个公司或一个独立的客户&#xff09;的数据对其他租户是不可见的。在 RuoYi 框架&#xff08;您当前项目所使用的基础框架&#xff09;中&#xff0c;这通常是通过在数据表中增加一个…...

使用Spring AI和MCP协议构建图片搜索服务

目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式&#xff08;本地调用&#xff09; SSE模式&#xff08;远程调用&#xff09; 4. 注册工具提…...