4. 池化层相关概念
4.1 池化层原理
① 最大池化层有时也被称为下采样。
② dilation为空洞卷积,如下图所示。
③ Ceil_model为当超出区域时,只取最左上角的值。
④ 池化使得数据由5 * 5 变为3 * 3,甚至1 * 1的,这样导致计算的参数会大大减小。例如1080P的电影经过池化的转为720P的电影、或360P的电影后,同样的网速下,视频更为不卡。

4.2 池化层处理数据
import torch
from torch import nn
from torch.nn import MaxPool2dinput = torch.tensor([[1,2,0,3,1],[0,1,2,3,1],[1,2,1,0,0],[5,2,3,1,1],[2,1,0,1,1]], dtype = torch.float32)
input = torch.reshape(input,(-1,1,5,5))
print(input.shape)class Tudui(nn.Module):def __init__(self):super(Tudui, self).__init__()self.maxpool = MaxPool2d(kernel_size=3, ceil_mode=True)def forward(self, input):output = self.maxpool(input)return outputtudui = Tudui()
output = tudui(input)
print(output)
结果:

4.3 池化层处理图片
import torch
import torchvision
from torch import nn
from torch.nn import MaxPool2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriterdataset = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset, batch_size=64)class Tudui(nn.Module):def __init__(self):super(Tudui, self).__init__()self.maxpool = MaxPool2d(kernel_size=3, ceil_mode=True)def forward(self, input):output = self.maxpool(input)return outputtudui = Tudui()
writer = SummaryWriter("logs")
step = 0for data in dataloader:imgs, targets = datawriter.add_images("input", imgs, step)output = tudui(imgs)writer.add_images("output", output, step)step = step + 1
操作:
① 在 Anaconda 终端里面,激活py3.6.3环境,再输入 tensorboard --logdir=C:\Users\wangy\Desktop\03CV\logs 命令,将网址赋值浏览器的网址栏,回车,即可查看tensorboard显示日志情况。

结果:

相关文章:
4. 池化层相关概念
4.1 池化层原理 ① 最大池化层有时也被称为下采样。 ② dilation为空洞卷积,如下图所示。 ③ Ceil_model为当超出区域时,只取最左上角的值。 ④ 池化使得数据由5 * 5 变为3 * 3,甚至1 * 1的,这样导致计算的参数会大大减小。例如1080P的电…...
ChatGPT Prompting开发实战(一)
一、关于ChatGPT Prompting概述 当我们使用ChatGPT或者调用OpenAI的API时,就是在使用prompt进行交互,用户在对话过程中输入的一切信息都是prompt(提示词),当然工业级的prompt与人们通常理解的prompt可能不太一样。下面…...
VB车辆管理系统SQL设计与实现
摘 要 随着信息时代的到来,信息高速公路的兴起,全球信息化进入了一个新的发展时期。人们越来越认识到计算机强大的信息模块处理功能,使之成为信息产业的基础和支柱。 我国经济的快速发展,汽车已经成为人们不可缺少的交通工具。对于拥有大量车辆的机关企事业来说,车辆的…...
java 泛型
概述 泛型在java中有很重要的地位,在面向对象编程及各种设计模式中有非常广泛的应用。 泛型,就是类型参数。 一提到参数,最熟悉的就是定义方法时有形参,然后调用此方法时传递实参。 那么类型参数理解呢? 顾名思义&…...
git 查看/配置 local/global 用户名称和用户邮箱
1、--local: 本地设置(仅对当前仓库有效) git config --local user.name “你的名称” git config --local user.email “你的邮箱” 2、--global 全局设置(对当前用户的所有仓库有效) git config --global user.name “你的名称…...
无涯教程-分类算法 - 简介
分类可以定义为根据观测值或给定数据点预测类别的过程。分类的输出可以采用"黑色"或"白色"或"垃圾邮件"或"非垃圾邮件"的形式。 在数学上,分类是从输入变量(X)到输出变量(Y)近似映射函数(f)的任务,它属于有监督…...
python venv 打包,更换路径后,仍然读取到旧路径 ,最好别换路径,采用docker封装起来
机械盘路径 /home/yeqiang/code/xxx 移动到 /opt/xxx 编辑/opt/xxx/venv/bin/activate VIRTUAL_ENV"/home/yeqiang/code/xxx/venv" 改为 VIRTUAL_ENV"/opt/xxx/venv" 下面还有这么多,参考: (venv) yeqiangyeqiang-MS-7B23:/…...
MATLAB算法实战应用案例精讲-【自然语言处理】语义分割模型-DeepLabV3
目录 1、DeepLab系列简介 1.1.DeepLabV1 1.1.1创新点: 1.1.2. 动机: 1.1.3. 应对策略: 1.2.DeepLabV2 1.2.1.创新点: 1.2.2.动机 1.2.3. 应对策略: 1.3.DeepLabV3 1.3.1创新点: 1.3.2. 动机&am…...
road to master
零、学习计划 数据库相关 索引 我以为我对数据库索引很了解,直到我遇到了阿里面试官 - 知乎 (zhihu.com)给我一分钟,让你彻底明白MySQL聚簇索引和非聚簇索引 - 知乎 (zhihu.com)聚集索引(聚类索引)与非聚集索引(非聚类…...
<深度学习基础> 激活函数
为什么需要激活函数?激活函数的作用? 激活函数可以引入非线性因素,可以学习到复杂的任务或函数。如果不使用激活函数,则输出信号仅是一个简单的线性函数。线性函数一个一级多项式,线性方程的复杂度有限,从…...
评价指标BLUE了解
BLEU (Bilingual Evaluation Understudy,双语评估基准)是一组度量机器翻译和自然语言生成模型性能的评估指标。BLEU指标是由IBM公司提出的一种模型评估方法,以便在机器翻译领域中开发更好的翻译模型。BLEU指标根据生成的句子与人工参考句子之间的词、短语…...
5G网关如何提升智慧乡村农业生产效率
得益于我国持续推进5G建设,截至今年5月,我国5G基站总数已达284.4万个,覆盖全国所有地级市、县城城区和9成以上的乡镇镇区,实现“镇镇通5G”,全面覆盖了从城市到农村的延伸。 依托5G网络的技术优势,智慧乡村…...
微信小程序分享后真机参数获取不到和部分参数不能获取问题问题解决
微信小程序的很多API,都是BUG,近期开发小程序就遇到了分享后开发工具可以获取参数,但是真机怎么都拿不到参数的问题 一、真机参数获取不到问题解决 解决方式: 在onLoad(options) 中。 onLoad方法中一定要有options 这个参数。…...
Confluence使用教程(用户篇)
1、如何创建空间 可以把空间理解成一个gitlab仓库,空间之间相互独立,一般建议按照部门(小组的人太少,没必要创建空间)或者按照项目分别创建空间 2、confluence可以创建两种类型的文档:页面和博文 从内容上来…...
网络基础知识socket编程
目录 网络通信概述网络互连模型:OSI 七层模型TCP/IP 四层/五层模型数据的封装与拆封 IP 地址IP 地址的编址方式IP 地址的分类特殊的IP 地址如何判断2 个IP 地址是否在同一个网段内 TCP/IP 协议TCP 协议TCP 协议的特性TCP 报文格式建立TCP 连接:三次握手关…...
基于SpringBoot的员工(人事)管理系统
基于SpringBoot的员工(人事)管理系统 一、系统介绍二、功能展示三.其他系统实现五.获取源码 一、系统介绍 项目名称:基于SPringBoot的员工管理系统 项目架构:B/S架构 开发语言:Java语言 前端技术:BootS…...
【计算机网络】序列化与反序列化
文章目录 1. 如何处理结构化数据?序列化 与 反序列化 2. 实现网络版计算器1. Tcp 套接字的封装——sock.hpp创建套接字——Socket绑定——Bind将套接字设置为监听状态——Listen获取连接——Accept发起连接——Connect 2. 服务器的实现 ——TcpServer.hpp初始化启动…...
Linux内核学习(七)—— 定时器和时间管理(基于Linux 2.6内核)
目录 一、内核中的时间概念 二、节拍率:HZ 实时时钟 系统定时器 三、定时器 系统定时器是一种可编程硬件芯片,能以固定频率产生定时器中断,它所对应的中断处理程序负责更新系统时间,也负责执行需要周期性运行的任务。 一、内…...
Tortoise Git(乌龟git)常用命令总结
查看全局和本地 Git 配置 打开命令行终端(如 Git Bash),分别执行以下命令查看全局和本地的 Git 配置信息: git config --global -l git config --local -l确保配置中没有任何与 SSH 相关的设置 移除全局和本地 SSH 相关配置&…...
SSM商城项目实战:物流管理
SSM商城项目实战:物流管理 在SSM商城项目中,物流管理是一个重要的功能模块。通过物流管理,可以实现订单的配送、运输和签收等操作。本文将介绍如何在SSM商城项目中实现物流管理功能的思路和步骤代码。 实现SSM商城项目中物流管理的思路总结如…...
Ubuntu系统下交叉编译openssl
一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机:Ubuntu 20.04.6 LTSHost:ARM32位交叉编译器:arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...
Zustand 状态管理库:极简而强大的解决方案
Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...
边缘计算医疗风险自查APP开发方案
核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...
【大模型RAG】Docker 一键部署 Milvus 完整攻略
本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装;只需暴露 19530(gRPC)与 9091(HTTP/WebUI)两个端口,即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...
【Go】3、Go语言进阶与依赖管理
前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课,做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程,它的核心机制是 Goroutine 协程、Channel 通道,并基于CSP(Communicating Sequential Processes࿰…...
Spring AI 入门:Java 开发者的生成式 AI 实践之路
一、Spring AI 简介 在人工智能技术快速迭代的今天,Spring AI 作为 Spring 生态系统的新生力量,正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务(如 OpenAI、Anthropic)的无缝对接&…...
C++.OpenGL (20/64)混合(Blending)
混合(Blending) 透明效果核心原理 #mermaid-svg-SWG0UzVfJms7Sm3e {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-icon{fill:#552222;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-text{fill…...
门静脉高压——表现
一、门静脉高压表现 00:01 1. 门静脉构成 00:13 组成结构:由肠系膜上静脉和脾静脉汇合构成,是肝脏血液供应的主要来源。淤血后果:门静脉淤血会同时导致脾静脉和肠系膜上静脉淤血,引发后续系列症状。 2. 脾大和脾功能亢进 00:46 …...
LangChain【6】之输出解析器:结构化LLM响应的关键工具
文章目录 一 LangChain输出解析器概述1.1 什么是输出解析器?1.2 主要功能与工作原理1.3 常用解析器类型 二 主要输出解析器类型2.1 Pydantic/Json输出解析器2.2 结构化输出解析器2.3 列表解析器2.4 日期解析器2.5 Json输出解析器2.6 xml输出解析器 三 高级使用技巧3…...
工厂方法模式和抽象工厂方法模式的battle
1.案例直接上手 在这个案例里面,我们会实现这个普通的工厂方法,并且对比这个普通工厂方法和我们直接创建对象的差别在哪里,为什么需要一个工厂: 下面的这个是我们的这个案例里面涉及到的接口和对应的实现类: 两个发…...
