数学建模:CRITIC赋权法
🔆 文章首发于我的个人博客:欢迎大佬们来逛逛
CRITIC赋权法
算法流程
- 构建原始数据矩阵 X X X,他是一个 m ∗ n m * n m∗n 的矩阵, m m m 表示评价对象个数, n n n 表示指标个数
- 对原始数据矩阵进行正向化处理
- 计算矩阵的变异性,即计算矩阵的**标准差:**得到的 S i S_i Si 表示 第 i i i 个指标的标准差
{ x ˉ j = 1 n ∑ i = 1 n x i j S j = ∑ i = 1 n ( x i j − x ˉ j ) 2 n − 1 \left\{\begin{array}{rcl}\mathrm{\bar x_j~=~\frac1n~\sum_{i=1}^nx_{ij}}\\\\\mathrm{S_j~=\sqrt{\frac{\sum_{i=1}^n\left(x_{ij}~-\bar x_j~\right)^2}{n-1}}}\end{array}\right. ⎩ ⎨ ⎧xˉj = n1 ∑i=1nxijSj =n−1∑i=1n(xij −xˉj )2
- 描述指标的冲突性,首先计算指标之间两两的相关系数矩阵,然后计算指标的冲突性:
- 求相关系数矩阵可以直接调用matlab的
corr函数
- 求相关系数矩阵可以直接调用matlab的
R j = ∑ i = 1 n ( 1 − r i j ) \mathrm{R_j~=\sum_{i=1}^n(1-r_{ij})} Rj =i=1∑n(1−rij)
- 计算指标的信息承重量:
C j = S j ∑ i = 1 n ( 1 − r i j ) = S j × R j \mathrm{C_j~=S_j~\sum_{i=1}^n~(1-r_{ij}~)=S_j~\times R_j} Cj =Sj i=1∑n (1−rij )=Sj ×Rj
- 计算每个指标的客观权重:
W j = C j ∑ j = 1 p C j \mathrm{W_j=\frac{C_j}{\sum_{j=1}^pC_j}} Wj=∑j=1pCjCj
代码实现
%%对比性
function [Score,w]=mfunc_CRITIC(data1)% CRITIC方法:求解每个指标对应的客观权重算法% paramts: % data1: 原始数据矩阵,(m,n) m为评价对象,n为评价指标% returns:% Score:每个评价对象的综合得分% w: 所有指标的客观权重% 计算标准差STD=std(data1);%%矛盾性r=corr(data1);%计算指标间的相关系数f=sum(1-r);%%信息承载量c=STD.*f;%计算所有指标的权重w=c/sum(c);%计算得分[m,~]=size(data1);data= data1 ./ repmat(sum(data1.*data1) .^ 0.5, m, 1); %矩阵归一化% data=mapminmax(data1',0.002,1);%标准化到0.002-1区间% data=data';s=data*w';Score=100*s/max(s);
end
相关文章:
数学建模:CRITIC赋权法
🔆 文章首发于我的个人博客:欢迎大佬们来逛逛 CRITIC赋权法 算法流程 构建原始数据矩阵 X X X,他是一个 m ∗ n m * n m∗n 的矩阵, m m m 表示评价对象个数, n n n 表示指标个数对原始数据矩阵进行正向化处理计算…...
Facebook message tag 使用攻略
Messenger 讯息传不出去?无法发送FB 讯息给非好友? 2020年3月,Facebook 为了防止用户被过多的推广或垃圾讯息困扰而更新使用条款,现在商家要用FB传讯息给所有人(包括非好友),应该使用 Facebook …...
气传导耳机哪个品牌比较好?综合表现很不错的气传导耳机推荐
气传导耳机不仅能够提升幸福感还能听到周围环境声,大大提高安全性。如果你在寻找一款高品质的气传导耳机,又不知从何入手时,不要担心,我已经为你精心挑选了四款市面上综合表现很不错的气传导耳机,让你享受更好的音质…...
Rabbitmq的消息转换器
Spring会把你发送的消息序列化为字节发送给MQ,接收消息的时候,还会把字节反序列化为Java对象 ,只不过,默认情况下Spring采用的序列化方式是JDK序列化。众所周知,JDK序列化存在下列问题: 数据体积过大 有安全漏洞 可读…...
nvidia-docker的使用
拉取镜像 docker pull nvidia/cuda可能出现的问题 问题描述 Error response from daemon: manifest for nvidia/cuda:latest not found: manifest unknown: manifest解决方法: 为找到正确且合适的docker镜像版本 在supported-tags中找到与自己系统对应的cuda版本…...
C++新经典 | C语言
目录 一、基础之查漏补缺 1.float精度问题 2.字符型数据 3.变量初值问题 4.赋值&初始化 5.头文件之<> VS " " 6.逻辑运算 7.数组 7.1 二维数组初始化 7.2 字符数组 8.字符串处理函数 8.1 strcat 8.2 strcpy 8.3 strcmp 8.4 strlen 9.函数 …...
物联网智慧种植农业大棚系统
一、项目背景 智慧农业是是将物联网技术和农业生产箱管理的新型农业,依托部署在农业生产现场的各种传感节点,以物联网网关为通道形成数据传输网络,可以实现控制柜、环境监测传感器、气象监测机器等设备的远程监控,达到及时高校的…...
TabBar组件如何跳转页面?
1、先引入 2、假数据 const tabs [{key: home,title: 首页,icon: <AppOutline />,badge: Badge.dot,},{key: todo,title: 待办,icon: <UnorderedListOutline />,badge: 5,},{key: message,title: 消息,icon: (active: boolean) >active ? <MessageFill /&…...
Vue.js中,router和route
<div class"search">{{$route.params.things}}<van-nav-bar fixed title"商品列表" left-arrow click-left"$router.go(-1)" /><van-searchreadonlyshape"round"background"#ffffff"value"手机"sh…...
【微服务】07-缓存
文章目录 为不同的场景设计合适的缓存策略1. 缓存是什么2. 缓存的场景3. 缓存的策略4. 缓存位置5. 缓存实现的要点6. 注意问题7. 使用的组件8. 内存缓存和分布式缓存区别 总结 为不同的场景设计合适的缓存策略 1. 缓存是什么 缓存是计算结果的“临时”存储和重复使用缓存本质…...
权限校验中的“双token”方案
1. 双Token中的两个token分别是什么? 1.1 access_token 1.2 fresh_token 2. 为什么需要双token?一个token不行吗? 答: 两个token的职责不同。其中,access_token是在每次请求的时候携带给后端进行权限校验ÿ…...
TensorFlow的基本概念
TensorFlow 是由 Google 开发的开源机器学习框架,其基本概念如下: 1. 张量(Tensor):TensorFlow 中最基本的数据结构,是多维数组,可以理解为向量或矩阵的推广。常见的张量有常量张量、变量张量和…...
【卷积神经网络】MNIST 手写体识别
LeNet-5 是经典卷积神经网络之一,1998 年由 Yann LeCun 等人在论文 《Gradient-Based Learning Applied to Document Recognition》中提出。LeNet-5 网络使用了卷积层、池化层和全连接层,实现可以应用于手写体识别的卷积神经网络。TensorFlow 内置了 MNI…...
Ansible学习笔记2
Ansible是Python开发的自动化运维工具,集合了众多运维工具(Puppet、cfengine、chef、func、fabric)的优点,实现了批量系统配置,批量程序部署、批量运行命令等功能。 特点: 1)部署简单ÿ…...
80. 删除有序数组中的重复项 II
【中等题】 题目: 给你一个有序数组 nums ,请你 原地 删除重复出现的元素,使得出现次数超过两次的元素只出现两次 ,返回删除后数组的新长度。 不要使用额外的数组空间,你必须在 原地 修改输入数组 并在使用 O(1) 额…...
CVE-2023-36874 Windows错误报告服务本地权限提升漏洞分析
CVE-2023-36874 Windows错误报告服务本地权限提升漏洞分析 漏洞简介 Windows错误报告服务在提交错误报告前会创建wermgr.exe进程,而攻击者使用特殊手法欺骗系统创建伪造的wermgr.exe进程,从而以system权限执行代码。 影响版本 Windows10 1507 * Wind…...
IDEA遇到 git pull 冲突的几种解决方法
1 忽略本地修改,强制拉取远程到本地 主要是项目中的文档目录,看的时候可能多了些标注,现在远程文档更新,本地的版本已无用,可以强拉 git fetch --all git reset --hard origin/dev git pull关于commit和pull的先后顺…...
[Unity]UI和美术出图效果不一致
问题描述:美术使用PS在Gamma空间下设计的UI图,导入到Unity,因为Unity使用的是线性空间,导致半透明的UI效果和美术设计的不一致。 解决方案: (一)让美术在线性空间下工作 (二&…...
SpringBoot整合JPA和Hibernate框架
Springboot整合JPAHibernate框架【待完成】 随着MybatisPlus技术的发展,JPA和Hibernate技术已经逐步淘汰 JPA遵循了Hibernate框架规则,目前使用的不多 1、添加依赖 <!--jpa--> <dependency><groupId>org.springframework.boot</…...
Java中文件的创建(三种方式),文件常用的方法
文件的创建 方式1: new File(String pathName) 根据路径构建一个File对象方式2: new File(File parent,String child) 根据父目录文件子路径构建方式3: new File(String parent,String child) 根据父目录子路径构建 代码: //方…...
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以? 在 Golang 的面试中,map 类型的使用是一个常见的考点,其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...
Appium+python自动化(十六)- ADB命令
简介 Android 调试桥(adb)是多种用途的工具,该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具,其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利,如安装和调试…...
【力扣数据库知识手册笔记】索引
索引 索引的优缺点 优点1. 通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度(创建索引的主要原因)。3. 可以加速表和表之间的连接,实现数据的参考完整性。4. 可以在查询过程中,…...
【位运算】消失的两个数字(hard)
消失的两个数字(hard) 题⽬描述:解法(位运算):Java 算法代码:更简便代码 题⽬链接:⾯试题 17.19. 消失的两个数字 题⽬描述: 给定⼀个数组,包含从 1 到 N 所有…...
基础测试工具使用经验
背景 vtune,perf, nsight system等基础测试工具,都是用过的,但是没有记录,都逐渐忘了。所以写这篇博客总结记录一下,只要以后发现新的用法,就记得来编辑补充一下 perf 比较基础的用法: 先改这…...
【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具
第2章 虚拟机性能监控,故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令:jps [options] [hostid] 功能:本地虚拟机进程显示进程ID(与ps相同),可同时显示主类&#x…...
网络编程(UDP编程)
思维导图 UDP基础编程(单播) 1.流程图 服务器:短信的接收方 创建套接字 (socket)-----------------------------------------》有手机指定网络信息-----------------------------------------------》有号码绑定套接字 (bind)--------------…...
Spring数据访问模块设计
前面我们已经完成了IoC和web模块的设计,聪明的码友立马就知道了,该到数据访问模块了,要不就这俩玩个6啊,查库势在必行,至此,它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据(数据库、No…...
AspectJ 在 Android 中的完整使用指南
一、环境配置(Gradle 7.0 适配) 1. 项目级 build.gradle // 注意:沪江插件已停更,推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...
算法岗面试经验分享-大模型篇
文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer (1)资源 论文&a…...
