机器学习基础17-基于波士顿房价(Boston House Price)数据集训练模型的整个过程讲解
机器学习是一项经验技能,实践是掌握机器学习、提高利用机器学习
解决问题的能力的有效方法之一。那么如何通过机器学习来解决问题呢?
本节将通过一个实例来一步一步地介绍一个回归问题。
本章主要介绍以下内容:
- 如何端到端地完成一个回归问题的模型。
- 如何通过数据转换提高模型的准确度。
- 如何通过调参提高模型的准确度。
- 如何通过集成算法提高模型的准确度。
1 定义问题
在这个项目中将分析研究波士顿房价(Boston House Price)数据集,这个数据集中的每一行数据都是对波士顿周边或城镇房价的描述。数据是1978年统计收集的。数据中包含以下14个特征和506条数据(UCI机器学习仓库中的定义)。
· CRIM:城镇人均犯罪率。
· ZN:住宅用地所占比例。
· INDUS:城镇中非住宅用地所占比例。
· CHAS:CHAS虚拟变量,用于回归分析。
· NOX:环保指数。
· RM:每栋住宅的房间数。
· AGE:1940年以前建成的自住单位的比例。
· DIS:距离5个波士顿的就业中心的加权距离。
· RAD:距离高速公路的便利指数。
· TAX:每一万美元的不动产税率。
· PRTATIO:城镇中的教师学生比例。
· B:城镇中的黑人比例。
· LSTAT:地区中有多少房东属于低收入人群。
· MEDV:自住房屋房价中位数。
通过对这些特征属性的描述,我们可以发现输入的特征属性的度量单位是不统一的,也许需要对数据进行度量单位的调整。
2 导入数据
首先导入在项目中需要的类库。代码如下:
import pandas as pd
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.linear_model import LogisticRegressionfrom sklearn.model_selection import KFold, cross_val_score
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
接下来导入数据集到Python中,这个数据集也可以从UCI机器学习仓库下载,在导入数据集时还设定了数据属性特征的名字。
代码如下:
#导入数据
path = 'D:\down\\BostonHousing.csv'
data = pd.read_csv(path)
3 理解数据
对导入的数据进行分析,便于构建合适的模型。首先看一下数据维度,例如数据集中有多少条记录、有多少个数据特征。
代码如下:
print('data.shape=',data.shape)
执行之后我们可以看到总共有506条记录和14个特征属性,这与UCI提供的信息一致。
data.shape= (506, 14)
再查看各个特征属性的字段类型。代码如下:
#特征属性字段类型
print(data.dtypes)
可以看到所有的特征属性都是数字,而且大部分特征属性都是浮点
数,也有一部分特征属性是整数类型的。执行结果如下:
crim float64
zn float64
indus float64
chas int64
nox float64
rm float64
age float64
dis float64
rad int64
tax int64
ptratio float64
b float64
lstat float64
medv float64
dtype: object
接下来对数据进行一次简单的查看,在这里我们查看一下最开始的30条记录。代码如下:
print(data.head(30))
执行结果如下:
crim zn indus chas nox ... tax ptratio b lstat medv
0 0.00632 18.0 2.31 0 0.538 ... 296 15.3 396.90 4.98 24.0
1 0.02731 0.0 7.07 0 0.469 ... 242 17.8 396.90 9.14 21.6
2 0.02729 0.0 7.07 0 0.469 ... 242 17.8 392.83 4.03 34.7
3 0.03237 0.0 2.18 0 0.458 ... 222 18.7 394.63 2.94 33.4
4 0.06905 0.0 2.18 0 0.458 ... 222 18.7 396.90 5.33 36.2
5 0.02985 0.0 2.18 0 0.458 ... 222 18.7 394.12 5.21 28.7
6 0.08829 12.5 7.87 0 0.524 ... 311 15.2 395.60 12.43 22.9
7 0.14455 12.5 7.87 0 0.524 ... 311 15.2 396.90 19.15 27.1
8 0.21124 12.5 7.87 0 0.524 ... 311 15.2 386.63 29.93 16.5
9 0.17004 12.5 7.87 0 0.524 ... 311 15.2 386.71 17.10 18.9
10 0.22489 12.5 7.87 0 0.524 ... 311 15.2 392.52 20.45 15.0
11 0.11747 12.5 7.87 0 0.524 ... 311 15.2 396.90 13.27 18.9
12 0.09378 12.5 7.87 0 0.524 ... 311 15.2 390.50 15.71 21.7
13 0.62976 0.0 8.14 0 0.538 ... 307 21.0 396.90 8.26 20.4
14 0.63796 0.0 8.14 0 0.538 ... 307 21.0 380.02 10.26 18.2
15 0.62739 0.0 8.14 0 0.538 ... 307 21.0 395.62 8.47 19.9
16 1.05393 0.0 8.14 0 0.538 ... 307 21.0 386.85 6.58 23.1
17 0.78420 0.0 8.14 0 0.538 ... 307 21.0 386.75 14.67 17.5
18 0.80271 0.0 8.14 0 0.538 ... 307 21.0 288.99 11.69 20.2
19 0.72580 0.0 8.14 0 0.538 ... 307 21.0 390.95 11.28 18.2
20 1.25179 0.0 8.14 0 0.538 ... 307 21.0 376.57 21.02 13.6
21 0.85204 0.0 8.14 0 0.538 ... 307 21.0 392.53 13.83 19.6
22 1.23247 0.0 8.14 0 0.538 ... 307 21.0 396.90 18.72 15.2
23 0.98843 0.0 8.14 0 0.538 ... 307 21.0 394.54 19.88 14.5
24 0.75026 0.0 8.14 0 0.538 ... 307 21.0 394.33 16.30 15.6
25 0.84054 0.0 8.14 0 0.538 ... 307 21.0 303.42 16.51 13.9
26 0.67191 0.0 8.14 0 0.538 ... 307 21.0 376.88 14.81 16.6
27 0.95577 0.0 8.14 0 0.538 ... 307 21.0 306.38 17.28 14.8
28 0.77299 0.0 8.14 0 0.538 ... 307 21.0 387.94 12.80 18.4
29 1.00245 0.0 8.14 0 0.538 ... 307 21.0 380.23 11.98 21.0
接下来看一下数据的描述性统计信息。代码如下:
#pandas 新版本
pd.options.display.precision=1
#pandas老版本
#pd.set_option("precision", 1)
在描述性统计信息中包含数据的最大值、最小值、中位值、四分位值
等,分析这些数据能够加深对数据分布、数据结构等的理解。结果如下
crim zn indus chas ... ptratio b lstat medv
count 5.1e+02 506.0 506.0 5.1e+02 ... 506.0 506.0 506.0 506.0
mean 3.6e+00 11.4 11.1 6.9e-02 ... 18.5 356.7 12.7 22.5
std 8.6e+00 23.3 6.9 2.5e-01 ... 2.2 91.3 7.1 9.2
min 6.3e-03 0.0 0.5 0.0e+00 ... 12.6 0.3 1.7 5.0
25% 8.2e-02 0.0 5.2 0.0e+00 ... 17.4 375.4 6.9 17.0
50% 2.6e-01 0.0 9.7 0.0e+00 ... 19.1 391.4 11.4 21.2
75% 3.7e+00 12.5 18.1 0.0e+00 ... 20.2 396.2 17.0 25.0
max 8.9e+01 100.0 27.7 1.0e+00 ... 22.0 396.9 38.0 50.0
接下来看一下数据特征之间的两两关联关系,这里查看数据的皮尔逊相关系数。代码如下:
crim zn indus chas nox ... tax ptratio b lstat medv
crim 1.00 -0.20 0.41 -5.59e-02 0.42 ... 0.58 0.29 -0.39 0.46 -0.39
zn -0.20 1.00 -0.53 -4.27e-02 -0.52 ... -0.31 -0.39 0.18 -0.41 0.36
indus 0.41 -0.53 1.00 6.29e-02 0.76 ... 0.72 0.38 -0.36 0.60 -0.48
chas -0.06 -0.04 0.06 1.00e+00 0.09 ... -0.04 -0.12 0.05 -0.05 0.18
nox 0.42 -0.52 0.76 9.12e-02 1.00 ... 0.67 0.19 -0.38 0.59 -0.43
rm -0.22 0.31 -0.39 9.13e-02 -0.30 ... -0.29 -0.36 0.13 -0.61 0.70
age 0.35 -0.57 0.64 8.65e-02 0.73 ... 0.51 0.26 -0.27 0.60 -0.38
dis -0.38 0.66 -0.71 -9.92e-02 -0.77 ... -0.53 -0.23 0.29 -0.50 0.25
rad 0.63 -0.31 0.60 -7.37e-03 0.61 ... 0.91 0.46 -0.44 0.49 -0.38
tax 0.58 -0.31 0.72 -3.56e-02 0.67 ... 1.00 0.46 -0.44 0.54 -0.47
ptratio 0.29 -0.39 0.38 -1.22e-01 0.19 ... 0.46 1.00 -0.18 0.37 -0.51
b -0.39 0.18 -0.36 4.88e-02 -0.38 ... -0.44 -0.18 1.00 -0.37 0.33
lstat 0.46 -0.41 0.60 -5.39e-02 0.59 ... 0.54 0.37 -0.37 1.00 -0.74
medv -0.39 0.36 -0.48 1.75e-01 -0.43 ... -0.47 -0.51 0.33 -0.74 1.00[14 rows x 14 columns]
通过上面的结果可以看到,有些特征属性之间具有强关联关系(>0.7或<-0.7),如:
· NOX与INDUS之间的皮尔逊相关系数是0.76。
· DIS与INDUS之间的皮尔逊相关系数是-0.71。
· TAX与INDUS之间的皮尔逊相关系数是0.72。
· AGE与NOX之间的皮尔逊相关系数是0.73。
· DIS与NOX之间的皮尔逊相关系数是-0.77。
4 数据可视化
单一特征图表
首先查看每一个数据特征单独的分布图,多查看几种不同的图表有助于发现更好的方法。我们可以通过查看各个数据特征的直方图,来感受一下数据的分布情况。代码如下:
data.hist(sharex=False,sharey=False,xlabelsize=1,ylabelsize=1)
pyplot.show()
执行结果如下图所示,从图中可以看到有些数据呈指数分布,如
CRIM、ZN、AGE和B;有些数据特征呈双峰分布,如RAD和TAX。

通过密度图可以展示这些数据的特征属性,密度图比直方图更加平滑地展示了这些数据特征。代码如下:
data.plot(kind='density',subplots=True,layout=(4,4),sharex=False,fontsize=1)
pyplot.show()
在密度图中,指定layout=(4,4),这说明要画一个四行四列的图
形。执行结果如图所示

通过箱线图可以查看每一个数据特征的状况,也可以很方便地看出数据分布的偏态程度。代码如下:
data.plot(kind='box',subplots=True,layout=(4,4),sharex=False,fontsize=8)
pyplot.show()
执行结果:

多重数据图表
接下来利用多重数据图表来查看不同数据特征之间的相互影响关系。首先看一下散点矩阵图。代码如下:
#散点矩阵图
scatter_matrix(data)
pyplot.show()
通过散点矩阵图可以看到,虽然有些数据特征之间的关联关系很强,但是这些数据分布结构也很好。即使不是线性分布结构,也是可以很方便进行预测的分布结构,执行结果如图所示。

再看一下数据相互影响的相关矩阵图。代码如下:
#相关矩阵图
names = ['crim', 'zn', 'indus', 'chas', 'nox', 'rm', 'age', 'dis', 'rad', 'tax','ptratio', 'b', 'lstat']
fig = pyplot.figure()
ax = fig.add_subplot(111)
cax = ax.matshow(data.corr(), vmin =-1,vmax =1, interpolation='none')
fig.colorbar(cax)
ticks = np.arange(0,13,1)
ax.set_xticks(ticks)
ax.set_yticks(ticks)
ax.set_xticklabels(names)
ax.set_yticklabels(names)
pyplot.show()
执行结果如图所示,根据图例可以看到,数据特征属性之间的两
两相关性,有些属性之间是强相关的,建议在后续的处理中移除这些特征属性,以提高算法的准确度。

通过数据的相关性和数据的分布等发现,数据集中的数据结构比较复杂,需要考虑对数据进行转换,以提高模型的准确度。可以尝试从以下几个方面对数据进行处理:
· 通过特征选择来减少大部分相关性高的特征。
· 通过标准化数据来降低不同数据度量单位带来的影响。
· 通过正态化数据来降低不同的数据分布结构,以提高算法的准确度。
可以进一步查看数据的可能性分级(离散化),它可以帮助提高决策树算法的准确度。
5.分离评估数据集
分离出一个评估数据集是一个很好的主意,这样可以确保分离出的数据集与训练模型的数据集完全隔离,有助于最终判断和报告模型的准确度。在进行到项目的最后一步处理时,会使用这个评估数据集来确认模型的准确度。这里分离出 20%的数据作为评估数据集,80%的数据作为训练数据集。
代码如下:
#分离数据集,分离出 20%的数据作为评估数据集,80%的数据作为训练数据集
array = data.values
X = array[:, 0:13]
Y = array[:, 13]
validation_size = 0.2
seed = 7
X_train,X_validation,Y_train,Y_validation = train_test_split(X,Y,test_size = validation_size,random_state=seed)
6评估算法
分析完数据不能立刻选择出哪个算法对需要解决的问题最有效。我们直观上认为,由于部分数据的线性分布,线性回归算法和弹性网络回归算法对解决问题可能比较有效。另外,由于数据的离散化,通过决策树算法或支持向量机算法也许可以生成高准确度的模型。
到这里,依然不清楚哪个算法会生成准确度最高的模型,因此需要设计一个评估框架来选择合适的算法。我们采用10折交叉验证来分离数据,通过均方误差来比较算法的准确度。均方误差越趋近于0,算法准确度越高。
代码如下:
seed = 7
num_folds = 10
scoring = 'neg_mean_squared_error'
对原始数据不做任何处理,对算法进行一个评估,形成一个算法的评估基准。这个基准值是对后续算法改善优劣比较的基准值。我们选择三个线性算法和三个非线性算法来进行比较。
线性算法:线性回归(LR)、套索回归(LASSO)和弹性网络回归(EN)。
非线性算法:分类与回归树(CART)、支持向量机(SVM)和K近邻算法(KNN)。
算法模型初始化的代码如下:
#评估算法models = {}models['LR'] = LogisticRegression()
models['LASSO'] = Lasso()
models['EN'] = ElasticNet()
models['KNN'] = KNeighborsClassifier()
models['CART'] = DecisionTreeClassifier()
models['SVM'] = SVR()X_train,X_validation,Y_train,Y_validation = train_test_split(X,Y,test_size = validation_size,random_state=seed)results = []for key in models:kflod = KFold(n_splits=num_folds,random_state=seed,shuffle=True)result = cross_val_score(models[key], X_train, Y_train.astype('int'), cv=kflod,scoring= scoring)results.append(result)print("%s: %.3f (%.3f)" % (key, result.mean(), result.std()))
从执行结果来看,套索回归(LASSO)具有最优的 MSE,接下来是弹性网络回归(EN))算法。执行结果如下:
LR: -59.150 (17.584)
LASSO: -27.313 (13.573)
EN: -28.251 (13.577)
KNN: -62.158 (28.251)
CART: -31.000 (19.562)
SVM: -68.676 (33.776)
再查看所有的10折交叉分离验证的结果。代码如下:
#评估算法箱线图fig = pyplot.figure()
fig.suptitle("Algorithm Comparison")
ax = fig.add_subplot(111)
pyplot.boxplot(results)
ax.set_xticklabels(models.keys())
pyplot.show()
执行结果如图所示,从图中可以看到,线性算法的分布比较类
似,并且分类与回归树(CART)算法的结果分布非常紧凑。

评估算法——正态化数据
在这里猜测也许因为原始数据中不同特征属性的度量单位不一样,导致有的算法的结果不是很好。接下来通过对数据进行正态化,再次评估这些算法。在这里对训练数据集进行数据转换处理,将所有的数据特征值转化成“0”为中位值、标准差为“1”的数据。对数据正态化时,为了防止数据泄露,采用 Pipeline 来正态化数据和对模型进行评估。为了与前面的结果进行比较,此处采用相同的评估框架来评估算法模型。
代码如下:
#评估算法--正态化数据pipelines ={}pipelines['ScalerLR'] = Pipeline([('Scaler',StandardScaler()),('LR',LinearRegression())])
pipelines['ScalerLASSO'] = Pipeline([('Scaler',StandardScaler()),('LASSO',Lasso())])
pipelines['ScalerEN'] = Pipeline([('Scaler',StandardScaler()),('EN',ElasticNet())])
pipelines['ScalerKNN'] = Pipeline([('Scaler',StandardScaler()),('KNN',KNeighborsRegressor())])pipelines['ScalerCART'] = Pipeline([('Scaler',StandardScaler()),('CART',DecisionTreeRegressor())])
pipelines['ScalerSVM'] = Pipeline([('Scaler',StandardScaler()),('SVM',SVR())])X_train,X_validation,Y_train,Y_validation = train_test_split(X,Y,test_size = validation_size,random_state=seed)results = []for key in pipelines:kflod = KFold(n_splits=num_folds,random_state=seed,shuffle=True)cv_result = cross_val_score(pipelines[key], X_train, Y_train, cv=kflod,scoring= scoring)results.append(cv_result)print("%s: %.3f (%.3f)" % (key, cv_result.mean(), cv_result.std()))
执行后发现K近邻算法具有最优的MSE。执行结果如下:
ScalerLR: -22.006 (12.189)
ScalerLASSO: -27.206 (12.124)
ScalerEN: -28.301 (13.609)
ScalerKNN: -21.457 (15.016)
ScalerCART: -27.813 (20.786)
ScalerSVM: -29.570 (18.053)
接下来再来看一下所有的10折交叉分离验证的结果。代码如下:
#评估算法箱线图fig = pyplot.figure()
fig.suptitle("Algorithm Comparison")
ax = fig.add_subplot(111)
pyplot.boxplot(results)
ax.set_xticklabels(models.keys())
pyplot.show()
执行结果,生成的箱线图如图所示,可以看到K近邻算法具有最优的MSE和最紧凑的数据分布。

目前来看,K 近邻算法对做过数据转换的数据集有很好的结果,但是是否可以进一步对结果做一些优化呢?
K近邻算法的默认参数近邻个数(n_neighbors)是5,下面通过网格搜索算法来优化参数。代码如下:
#调参改善算法-knn
scaler = StandardScaler().fit(X_train) # fit生成规则
#scaler = StandardScaler.fit(X_train)
rescaledX = scaler.transform(X_train)
param_grid ={'n_neighbors':[1,3,5,7,9,11,13,15,19,21]}
model = KNeighborsRegressor()kflod = KFold(n_splits=num_folds,random_state=seed,shuffle=True)
grid = GridSearchCV(estimator =model,param_grid=param_grid,scoring=scoring,cv = kflod)grid_result = grid.fit(X=rescaledX,y = Y_train)print('最优:%s 使用%s'%(grid_result.best_score_,grid_result.best_params_))cv_results = zip(grid_result.cv_results_['mean_test_score'],grid_result.cv_results_['params'])for mean,param in cv_results:print(mean,param)
最优结果——K近邻算法的默认参数近邻个数(n_neighbors)是1。执
行结果如下:
最优:-19.497828658536584 使用{'n_neighbors': 1}
-19.497828658536584 {'n_neighbors': 1}
-19.97798367208672 {'n_neighbors': 3}
-21.270966658536583 {'n_neighbors': 5}
-21.577291737182684 {'n_neighbors': 7}
-21.00107515055706 {'n_neighbors': 9}
-21.490306228582945 {'n_neighbors': 11}
-21.26853270313177 {'n_neighbors': 13}
-21.96809222222222 {'n_neighbors': 15}
-23.506900689142622 {'n_neighbors': 19}
-24.240302870416464 {'n_neighbors': 21}
确定最终模型
我们已经确定了使用极端随机树(ET)算法来生成模型,下面就对该算法进行训练和生成模型,并计算模型的准确度。代码如下:
#训练模型caler = StandardScaler().fit(X_train)
rescaledX = scaler.transform(X_train)
gbr = ExtraTreeRegressor()
gbr.fit(X=rescaledX,y=Y_train)
#评估算法模型rescaledX_validation = scaler.transform(X_validation)
predictions = gbr.predict(rescaledX_validation)
print(mean_squared_error(Y_validation,predictions))
执行结果如下:
14.392352941176469
本项目实例从问题定义开始,直到最后的模型生成为止,完成了一个完整的机器学习项目。通过这个项目,理解了上一节中介绍的机器学习项目的模板,以及整个机器学习模型建立的流程。
相关文章:
机器学习基础17-基于波士顿房价(Boston House Price)数据集训练模型的整个过程讲解
机器学习是一项经验技能,实践是掌握机器学习、提高利用机器学习 解决问题的能力的有效方法之一。那么如何通过机器学习来解决问题呢? 本节将通过一个实例来一步一步地介绍一个回归问题。 本章主要介绍以下内容: 如何端到端地完成一个回归问题…...
哈希的应用——布隆过滤器
✅<1>主页::我的代码爱吃辣 📃<2>知识讲解:数据结构——位图 ☂️<3>开发环境:Visual Studio 2022 💬<4>前言:布隆过滤器是由布隆(Burton Howard Bloom&…...
LNMT的多机部署和双机热备
目录 一、环境 二、配置tomcat 三、配置nfs共享 四、配置nginx 1、两台都需要折磨配置 2、在http下面插入这两条信息 五、配置keepalived 1、安装 2、重新启动一下keepalived查看IP 六、验证双机热备 1、查看调度器备的IP,ip漂移说明keepalived生效 2、访…...
软件测试/测试开发丨Pytest和Allure报告 学习笔记
点此获取更多相关资料 本文为霍格沃兹测试开发学社学员学习笔记分享 原文链接:https://ceshiren.com/t/topic/26755 Pytest 命名规则 类型规则文件test_开头 或者 _test 结尾类Test 开头方法/函数test_开头注意:测试类中不可以添加__init__构造函数 注…...
十七、命令模式
一、什么是命令模式 命令(Command)模式的定义:将一个请求封装为一个对象,使发出请求的责任和执行请求的责任分割开。这样两者之间通过命令对象进行沟通,这样方便将命令对象进行储存、传递、调用、增加与管理。 命令…...
服务器安装 anaconda 及 conda: command not found [解决方案]
[解决方案] conda: command not found Anaconda3 安装conda: command not found Anaconda3 安装 由于连接的服务器,无法直接在anaconda官网上下载安装文件,所以使用如下方法: wget https://repo.anaconda.com/archive/Anaconda3-2023.03-Li…...
自动驾驶和辅助驾驶系统的概念性架构(二)
摘要: 本篇为第二部分主要介绍底层计算单元、示例工作负载 前言 本文档参考自动驾驶计算联盟(Autonomous Vehicle Computing Consortium)关于自动驾驶和辅助驾驶计算系统的概念系统架构。该架构旨在与SAE L1-L5级别的自动驾驶保持一致。本文主要介绍包括功能模块图…...
【c++】VC编译出的版本,发布版本如何使用
目录 使用release类型进行发布 应用程序无法正常启动 0xc000007b 版本对应 vcruntime140d 应用版本 参考文章 使用release类型进行发布 应用程序无法正常启动 0xc000007b "应用程序无法正常启动 0xc000007b" 错误通常是一个 Windows 应用程序错误…...
自然语言处理(五):子词嵌入(fastText模型)
子词嵌入 在英语中,“helps”“helped”和“helping”等单词都是同一个词“help”的变形形式。“dog”和“dogs”之间的关系与“cat”和“cats”之间的关系相同,“boy”和“boyfriend”之间的关系与“girl”和“girlfriend”之间的关系相同。在法语和西…...
Zabbix“专家坐诊”第202期问答汇总
问题一 Q:请问一下 zabbix 里面怎么能创建出和sh文件有关联的监控项? A: 1.使用 Zabbix Agent 主动模式:如果你在目标主机上安装了 Zabbix Agent,并且想要监控与 sh 文件相关的指标,可以创建一个自定义的…...
【c语言】输出n行按如下规律排列的数
题述:输出n行按如下规律排列的数 输入: 4(应该指的是n) 输出: 思路: 利用下标的规律求解,考察数组下标的灵活应用,我们可以看出数从1开始是斜着往下放的,那么我们如何利用两层for循环求解这道题ÿ…...
023 - STM32学习笔记 - 扩展外部SDRAM(二) - 扩展外部SDRAM实验
023- STM32学习笔记 - 扩展外部SDRAM(一) - 扩展外部SDRAM实验 本节内容中要配置的引脚很多,如果你用的开发板跟我的不一样,请详细参照STM32规格书中说明对相关GPIO引脚进行配置。 先提前对本届内容的变成步骤进行总结如下&…...
机器学习 | Python实现XGBoost极限梯度提升树模型答疑
机器学习 | MATLAB实现XGBoost极限梯度提升树模型答疑 目录 机器学习 | MATLAB实现XGBoost极限梯度提升树模型答疑问题系列问题回答问题系列 关于XGBoost有几个问题想请教一下。1.XGBoost的API有哪些种调用方法?2.参数如何调? 问题回答 XGBoost的API有2种调用方法,一种是我们…...
关于使用远程工具连接mysql数据库时,提示:Public Key Retrieval is not allowed
我在使用DBeaver工具连接 数据库时,提示:Public Key Retrieval is not allowed, 我在前一天还是可以连接的,但是今天突然无法连接了, 但是最后捣鼓了一下又可以了。 具体方法:首先先把mysql服务停了&#x…...
leetcode做题笔记117. 填充每个节点的下一个右侧节点指针 II
给定一个二叉树: struct Node {int val;Node *left;Node *right;Node *next; } 填充它的每个 next 指针,让这个指针指向其下一个右侧节点。如果找不到下一个右侧节点,则将 next 指针设置为 NULL 。 初始状态下,所有 next 指针都…...
解决博客不能解析PHP直接下载源码问题
背景: 在网站设置反向代理后,网站突然不能正常访问,而是会直接下载访问文件的PHP源码 解决办法: 由于在搞完反向代理之后,PHP版本变成了纯静态,所以网站不能正常解析;只需要把PHP版本恢复正常…...
voc 转coco
import os import random import shutil import sys import json import glob import xml.etree.ElementTree as ET""" 修改下面3个参数 1.val_files_num : 验证集的数量 2.test_files_num :测试集的数量 3.voc_annotations : voc的annotations路径 …...
【C语言每日一题】03. 对齐输出
题目来源:http://noi.openjudge.cn/ch0101/03/ 03 对齐输出 总时间限制: 1000ms 内存限制: 65536kB 问题描述 读入三个整数,按每个整数占8个字符的宽度,右对齐输出它们。 输入 只有一行,包含三个整数,整数之间以一…...
七大排序完整版
目录 一、直接插入排序 (一)单趟直接插入排 1.分析核心代码 2.完整代码 (二)全部直接插入排 1.分析核心代码 2.完整代码 (三)时间复杂度和空间复杂度 二、希尔排序 (一)对…...
C语言的数据类型简介
一、基本类型 (1)六种基本类型 **字符串常量和字符常量的不同 1)‘a’为字符常量,”a”为字符串常量 2)每个字符串的结尾,编译器会自动添加一个结束标志位‘\0’ “a”包含两个字符’a’和’\0’ &#x…...
PHP和Node.js哪个更爽?
先说结论,rust完胜。 php:laravel,swoole,webman,最开始在苏宁的时候写了几年php,当时觉得php真的是世界上最好的语言,因为当初活在舒适圈里,不愿意跳出来,就好比当初活在…...
Docker 运行 Kafka 带 SASL 认证教程
Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明:server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...
【单片机期末】单片机系统设计
主要内容:系统状态机,系统时基,系统需求分析,系统构建,系统状态流图 一、题目要求 二、绘制系统状态流图 题目:根据上述描述绘制系统状态流图,注明状态转移条件及方向。 三、利用定时器产生时…...
多种风格导航菜单 HTML 实现(附源码)
下面我将为您展示 6 种不同风格的导航菜单实现,每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...
tree 树组件大数据卡顿问题优化
问题背景 项目中有用到树组件用来做文件目录,但是由于这个树组件的节点越来越多,导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多,导致的浏览器卡顿,这里很明显就需要用到虚拟列表的技术&…...
项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)
Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败,具体原因是客户端发送了密码认证请求,但Redis服务器未设置密码 1.为Redis设置密码(匹配客户端配置) 步骤: 1).修…...
均衡后的SNRSINR
本文主要摘自参考文献中的前两篇,相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程,其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt 根发送天线, n r n_r nr 根接收天线的 MIMO 系…...
JAVA后端开发——多租户
数据隔离是多租户系统中的核心概念,确保一个租户(在这个系统中可能是一个公司或一个独立的客户)的数据对其他租户是不可见的。在 RuoYi 框架(您当前项目所使用的基础框架)中,这通常是通过在数据表中增加一个…...
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...
【Android】Android 开发 ADB 常用指令
查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...
