当前位置: 首页 > news >正文

数学建模——校园供水系统智能管理

import pandas as pd
data1=pd.read_excel("C://Users//JJH//Desktop//E//附件_一季度.xlsx")
data2=pd.read_excel("C://Users//JJH//Desktop//E//附件_二季度.xlsx")
data3=pd.read_excel("C://Users//JJH//Desktop//E//附件_三季度.xlsx")
data4=pd.read_excel("C://Users//JJH//Desktop//E//附件_四季度.xlsx")
data1
水表名水表号采集时间上次读数当前读数用量
0司法鉴定中心02019/1/1 00:15:002157.12157.10.0
1司法鉴定中心02019/1/1 00:30:002157.12157.10.0
2司法鉴定中心02019/1/1 00:45:002157.12157.10.0
3司法鉴定中心02019/1/1 01:00:002157.12157.10.0
4司法鉴定中心02019/1/1 01:15:002157.12157.10.0
.....................
729278物业30301001022019/3/31 22:45:0050.950.90.0
729279物业30301001022019/3/31 23:00:0050.950.90.0
729280物业30301001022019/3/31 23:15:0050.950.90.0
729281物业30301001022019/3/31 23:30:0050.950.90.0
729282物业30301001022019/3/31 23:45:0050.950.90.0

729283 rows × 6 columns

data1.isnull().sum()
水表名     0
水表号     0
采集时间    0
上次读数    0
当前读数    0
用量      0
dtype: int64
data2.isnull().sum()
水表名     0
水表号     0
采集时间    0
上次读数    0
当前读数    0
用量      0
dtype: int64
data3.isnull().sum()
水表名     0
水表号     0
采集时间    0
上次读数    0
当前读数    0
用量      0
dtype: int64
data4.isnull().sum()
水表名     0
水表号     0
采集时间    0
上次读数    0
当前读数    0
用量      0
dtype: int64
import numpy as np
# 合并数据
data1['季度'] = pd.Series(["一季度" for i in range(len(data1.index))])
data2['季度'] = pd.Series(["二季度" for i in range(len(data2.index))])
data3['季度'] = pd.Series(["三季度" for i in range(len(data3.index))])
data4['季度'] = pd.Series(["四季度" for i in range(len(data4.index))])
data1
水表名水表号采集时间上次读数当前读数用量季度
0司法鉴定中心02019/1/1 00:15:002157.12157.10.0一季度
1司法鉴定中心02019/1/1 00:30:002157.12157.10.0一季度
2司法鉴定中心02019/1/1 00:45:002157.12157.10.0一季度
3司法鉴定中心02019/1/1 01:00:002157.12157.10.0一季度
4司法鉴定中心02019/1/1 01:15:002157.12157.10.0一季度
........................
729278物业30301001022019/3/31 22:45:0050.950.90.0一季度
729279物业30301001022019/3/31 23:00:0050.950.90.0一季度
729280物业30301001022019/3/31 23:15:0050.950.90.0一季度
729281物业30301001022019/3/31 23:30:0050.950.90.0一季度
729282物业30301001022019/3/31 23:45:0050.950.90.0一季度

729283 rows × 7 columns

data = data1.append([data2,data3,data4],ignore_index=True) # 添加合并
data
C:\Users\JJH\AppData\Local\Temp\ipykernel_31264\4019438690.py:1: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.data = data1.append([data2,data3,data4],ignore_index=True) # 添加合并
水表名水表号采集时间上次读数当前读数用量季度
0司法鉴定中心02019/1/1 00:15:002157.12157.10.0一季度
1司法鉴定中心02019/1/1 00:30:002157.12157.10.0一季度
2司法鉴定中心02019/1/1 00:45:002157.12157.10.0一季度
3司法鉴定中心02019/1/1 01:00:002157.12157.10.0一季度
4司法鉴定中心02019/1/1 01:15:002157.12157.10.0一季度
........................
3086783消防36203032002019/12/31 22:45:0022.022.00.0四季度
3086784消防36203032002019/12/31 23:00:0022.022.00.0四季度
3086785消防36203032002019/12/31 23:15:0022.022.00.0四季度
3086786消防36203032002019/12/31 23:30:0022.022.00.0四季度
3086787消防36203032002019/12/31 23:45:0022.022.00.0四季度

3086788 rows × 7 columns

x=data[['水表名','用量','采集时间']]
x
水表名用量采集时间
0司法鉴定中心0.02019/1/1 00:15:00
1司法鉴定中心0.02019/1/1 00:30:00
2司法鉴定中心0.02019/1/1 00:45:00
3司法鉴定中心0.02019/1/1 01:00:00
4司法鉴定中心0.02019/1/1 01:15:00
............
3086783消防0.02019/12/31 22:45:00
3086784消防0.02019/12/31 23:00:00
3086785消防0.02019/12/31 23:15:00
3086786消防0.02019/12/31 23:30:00
3086787消防0.02019/12/31 23:45:00

3086788 rows × 3 columns

x1=x[x['水表名']=='消防']
x1
水表名用量采集时间
1500912消防0.02019/4/22 12:15:00
1500913消防0.02019/4/22 12:30:00
1500914消防0.02019/4/22 12:45:00
1500915消防0.02019/4/22 13:00:00
1500916消防0.02019/4/22 13:15:00
............
3086783消防0.02019/12/31 22:45:00
3086784消防0.02019/12/31 23:00:00
3086785消防0.02019/12/31 23:15:00
3086786消防0.02019/12/31 23:30:00
3086787消防0.02019/12/31 23:45:00

23984 rows × 3 columns

import matplotlib.pyplot as plt
print(len(x1))
23984
# 自定义x轴刻度
xticks = ['Jan', 'Mar', 'May', 'Jul', 'Sep','Nov']  # 自定义刻度标签
x = range(23984)# 自定义x轴刻度
num_ticks = 6  # 指定刻度数量
step = len(x) // num_ticks  # 计算刻度步长
xtick_positions = [i * step for i in range(num_ticks)]  # 生成刻度位置
plt.xticks(xtick_positions, xticks)
plt.plot(x1['采集时间'],x1['用量'],color='black',linewidth=0.5)
plt.show()       


在这里插入图片描述

x=data[['水表名','用量','采集时间']]
x     
水表名用量采集时间
0司法鉴定中心0.02019/1/1 00:15:00
1司法鉴定中心0.02019/1/1 00:30:00
2司法鉴定中心0.02019/1/1 00:45:00
3司法鉴定中心0.02019/1/1 01:00:00
4司法鉴定中心0.02019/1/1 01:15:00
............
3086783消防0.02019/12/31 22:45:00
3086784消防0.02019/12/31 23:00:00
3086785消防0.02019/12/31 23:15:00
3086786消防0.02019/12/31 23:30:00
3086787消防0.02019/12/31 23:45:00

3086788 rows × 3 columns

x2=x[x['水表名']=='XXX第一学生宿舍']
x2
水表名用量采集时间
220372XXX第一学生宿舍0.122019/1/1 00:15:00
220373XXX第一学生宿舍0.122019/1/1 00:30:00
220374XXX第一学生宿舍0.122019/1/1 00:45:00
220375XXX第一学生宿舍0.122019/1/1 01:00:00
220376XXX第一学生宿舍0.122019/1/1 01:15:00
............
2533541XXX第一学生宿舍0.402019/12/31 22:45:00
2533542XXX第一学生宿舍0.402019/12/31 23:00:00
2533543XXX第一学生宿舍0.502019/12/31 23:15:00
2533544XXX第一学生宿舍0.502019/12/31 23:30:00
2533545XXX第一学生宿舍0.502019/12/31 23:45:00

35039 rows × 3 columns

# 自定义x轴刻度
xticks = ['Jan', 'Mar', 'May', 'Jul', 'Sep','Nov']  # 自定义刻度标签# 自定义x轴刻度
num_ticks = 6  # 指定刻度数量
step = len(x2) // num_ticks  # 计算刻度步长
xtick_positions = [i * step for i in range(num_ticks)]  # 生成刻度位置
plt.xticks(xtick_positions, xticks)
plt.plot(x2['采集时间'],x2['用量'],color='black',linewidth=0.5)
plt.show()       


在这里插入图片描述

x=data[['水表名','用量','采集时间']]
x3=x[x['水表名']=='留学生楼(新)']
# 自定义x轴刻度
xticks = ['Jan', 'Mar', 'May', 'Jul', 'Sep','Nov']  # 自定义刻度标签# 自定义x轴刻度
num_ticks = 6  # 指定刻度数量
step = len(x3) // num_ticks  # 计算刻度步长
xtick_positions = [i * step for i in range(num_ticks)]  # 生成刻度位置
plt.xticks(xtick_positions, xticks)
plt.plot(x3['采集时间'],x3['用量'],color='black',linewidth=0.3)
plt.show()       


在这里插入图片描述

x=data[['水表名','用量','采集时间']]
x4=x[x['水表名']=='XXX教学大楼总表']
# 自定义x轴刻度
xticks = ['Jan', 'Mar', 'May', 'Jul', 'Sep','Nov']  # 自定义刻度标签# 自定义x轴刻度
num_ticks = 6  # 指定刻度数量
step = len(x4) // num_ticks  # 计算刻度步长
xtick_positions = [i * step for i in range(num_ticks)]  # 生成刻度位置
plt.xticks(xtick_positions, xticks)
plt.plot(x4['采集时间'],x4['用量'],color='black',linewidth=0.3)
plt.show()       


在这里插入图片描述

import matplotlib.pyplot as pltplt.rcParams['font.sans-serif'] = ['SimHei']  # 指定字体为SimHei
labels = ['消防', '留学生楼(新)', 'XXX教学大楼总表']plt.boxplot([x1['用量'],x3['用量'],x4['用量']])plt.xticks(range(1, 4), labels)
# 显示图形
plt.show()


在这里插入图片描述

x5=x[x['水表名']=='XXX第四学生宿舍']
x5
水表名用量采集时间
246289XXX第四学生宿舍0.42019/1/1 00:15:00
246290XXX第四学生宿舍0.42019/1/1 00:30:00
246291XXX第四学生宿舍0.42019/1/1 00:45:00
246292XXX第四学生宿舍0.42019/1/1 01:00:00
246293XXX第四学生宿舍0.42019/1/1 01:15:00
............
2560037XXX第四学生宿舍0.72019/12/31 22:45:00
2560038XXX第四学生宿舍0.62019/12/31 23:00:00
2560039XXX第四学生宿舍0.62019/12/31 23:15:00
2560040XXX第四学生宿舍0.52019/12/31 23:30:00
2560041XXX第四学生宿舍1.22019/12/31 23:45:00

35039 rows × 3 columns

x6=x[x['水表名']=='茶园+']
x6
水表名用量采集时间
611260茶园+0.02019/1/3 16:15:00
611261茶园+0.02019/1/3 16:30:00
611262茶园+0.02019/1/3 16:45:00
611263茶园+0.02019/1/3 17:00:00
611264茶园+0.02019/1/3 17:15:00
............
2945006茶园+0.02019/12/31 22:45:00
2945007茶园+0.02019/12/31 23:00:00
2945008茶园+0.02019/12/31 23:15:00
2945009茶园+0.02019/12/31 23:30:00
2945010茶园+0.02019/12/31 23:45:00

34249 rows × 3 columns

x7=x[x['水表名']=='XXX4舍热泵热水舍']
x7
水表名用量采集时间
x21=x[x['水表名']=='XXX第一学生宿舍']
x21
水表名用量采集时间
220372XXX第一学生宿舍0.122019/1/1 00:15:00
220373XXX第一学生宿舍0.122019/1/1 00:30:00
220374XXX第一学生宿舍0.122019/1/1 00:45:00
220375XXX第一学生宿舍0.122019/1/1 01:00:00
220376XXX第一学生宿舍0.122019/1/1 01:15:00
............
2533541XXX第一学生宿舍0.402019/12/31 22:45:00
2533542XXX第一学生宿舍0.402019/12/31 23:00:00
2533543XXX第一学生宿舍0.502019/12/31 23:15:00
2533544XXX第一学生宿舍0.502019/12/31 23:30:00
2533545XXX第一学生宿舍0.502019/12/31 23:45:00

35039 rows × 3 columns

x22=x[x['水表名']=='XXX第二学生宿舍']
x22
水表名用量采集时间
229011XXX第二学生宿舍0.92019/1/1 00:15:00
229012XXX第二学生宿舍0.72019/1/1 00:30:00
229013XXX第二学生宿舍0.82019/1/1 00:45:00
229014XXX第二学生宿舍0.72019/1/1 01:00:00
229015XXX第二学生宿舍0.12019/1/1 01:15:00
............
2542373XXX第二学生宿舍0.12019/12/31 22:45:00
2542374XXX第二学生宿舍0.12019/12/31 23:00:00
2542375XXX第二学生宿舍0.22019/12/31 23:15:00
2542376XXX第二学生宿舍0.12019/12/31 23:30:00
2542377XXX第二学生宿舍0.12019/12/31 23:45:00

35039 rows × 3 columns

x21.set_index('采集时间', inplace=True)
x22.set_index('采集时间', inplace=True)
print(x21['用量'].dtypes,x21['水表名'])
print(x22['用量'].dtypes,x22['水表名'])
x_sum = x21.add(x22, fill_value=0)# 打印结果
x_sum
float64 采集时间
2019/1/1 00:15:00      XXX第一学生宿舍
2019/1/1 00:30:00      XXX第一学生宿舍
2019/1/1 00:45:00      XXX第一学生宿舍
2019/1/1 01:00:00      XXX第一学生宿舍
2019/1/1 01:15:00      XXX第一学生宿舍...    
2019/12/31 22:45:00    XXX第一学生宿舍
2019/12/31 23:00:00    XXX第一学生宿舍
2019/12/31 23:15:00    XXX第一学生宿舍
2019/12/31 23:30:00    XXX第一学生宿舍
2019/12/31 23:45:00    XXX第一学生宿舍
Name: 水表名, Length: 35039, dtype: object
float64 采集时间
2019/1/1 00:15:00      XXX第二学生宿舍
2019/1/1 00:30:00      XXX第二学生宿舍
2019/1/1 00:45:00      XXX第二学生宿舍
2019/1/1 01:00:00      XXX第二学生宿舍
2019/1/1 01:15:00      XXX第二学生宿舍...    
2019/12/31 22:45:00    XXX第二学生宿舍
2019/12/31 23:00:00    XXX第二学生宿舍
2019/12/31 23:15:00    XXX第二学生宿舍
2019/12/31 23:30:00    XXX第二学生宿舍
2019/12/31 23:45:00    XXX第二学生宿舍
Name: 水表名, Length: 35039, dtype: object
水表名用量
采集时间
2019/1/1 00:15:00XXX第一学生宿舍XXX第二学生宿舍1.02
2019/1/1 00:30:00XXX第一学生宿舍XXX第二学生宿舍0.82
2019/1/1 00:45:00XXX第一学生宿舍XXX第二学生宿舍0.92
2019/1/1 01:00:00XXX第一学生宿舍XXX第二学生宿舍0.82
2019/1/1 01:15:00XXX第一学生宿舍XXX第二学生宿舍0.22
.........
2019/12/31 22:45:00XXX第一学生宿舍XXX第二学生宿舍0.50
2019/12/31 23:00:00XXX第一学生宿舍XXX第二学生宿舍0.50
2019/12/31 23:15:00XXX第一学生宿舍XXX第二学生宿舍0.70
2019/12/31 23:30:00XXX第一学生宿舍XXX第二学生宿舍0.60
2019/12/31 23:45:00XXX第一学生宿舍XXX第二学生宿舍0.60

35039 rows × 2 columns

x26=x[x['水表名']=='茶园+']
x26
水表名用量采集时间
611260茶园+0.02019/1/3 16:15:00
611261茶园+0.02019/1/3 16:30:00
611262茶园+0.02019/1/3 16:45:00
611263茶园+0.02019/1/3 17:00:00
611264茶园+0.02019/1/3 17:15:00
............
2945006茶园+0.02019/12/31 22:45:00
2945007茶园+0.02019/12/31 23:00:00
2945008茶园+0.02019/12/31 23:15:00
2945009茶园+0.02019/12/31 23:30:00
2945010茶园+0.02019/12/31 23:45:00

34249 rows × 3 columns

x21=x[x['水表名']=='XXX第一学生宿舍']
x21
水表名用量采集时间
220372XXX第一学生宿舍0.122019/1/1 00:15:00
220373XXX第一学生宿舍0.122019/1/1 00:30:00
220374XXX第一学生宿舍0.122019/1/1 00:45:00
220375XXX第一学生宿舍0.122019/1/1 01:00:00
220376XXX第一学生宿舍0.122019/1/1 01:15:00
............
2533541XXX第一学生宿舍0.402019/12/31 22:45:00
2533542XXX第一学生宿舍0.402019/12/31 23:00:00
2533543XXX第一学生宿舍0.502019/12/31 23:15:00
2533544XXX第一学生宿舍0.502019/12/31 23:30:00
2533545XXX第一学生宿舍0.502019/12/31 23:45:00

35039 rows × 3 columns

df_merged = pd.merge(x21, x26, on='采集时间', how='inner')
df_merged
水表名_x用量_x采集时间水表名_y用量_y
0XXX第一学生宿舍0.222019/1/3 16:15:00茶园+0.0
1XXX第一学生宿舍0.222019/1/3 16:30:00茶园+0.0
2XXX第一学生宿舍0.222019/1/3 16:45:00茶园+0.0
3XXX第一学生宿舍0.222019/1/3 17:00:00茶园+0.0
4XXX第一学生宿舍0.222019/1/3 17:15:00茶园+0.0
..................
34244XXX第一学生宿舍0.402019/12/31 22:45:00茶园+0.0
34245XXX第一学生宿舍0.402019/12/31 23:00:00茶园+0.0
34246XXX第一学生宿舍0.502019/12/31 23:15:00茶园+0.0
34247XXX第一学生宿舍0.502019/12/31 23:30:00茶园+0.0
34248XXX第一学生宿舍0.502019/12/31 23:45:00茶园+0.0

34249 rows × 5 columns

df_merged['总用水量'] = df_merged['用量_x'] + df_merged['用量_y']
df_merged
水表名_x用量_x采集时间水表名_y用量_y总用水量
0XXX第一学生宿舍0.222019/1/3 16:15:00茶园+0.00.22
1XXX第一学生宿舍0.222019/1/3 16:30:00茶园+0.00.22
2XXX第一学生宿舍0.222019/1/3 16:45:00茶园+0.00.22
3XXX第一学生宿舍0.222019/1/3 17:00:00茶园+0.00.22
4XXX第一学生宿舍0.222019/1/3 17:15:00茶园+0.00.22
.....................
34244XXX第一学生宿舍0.402019/12/31 22:45:00茶园+0.00.40
34245XXX第一学生宿舍0.402019/12/31 23:00:00茶园+0.00.40
34246XXX第一学生宿舍0.502019/12/31 23:15:00茶园+0.00.50
34247XXX第一学生宿舍0.502019/12/31 23:30:00茶园+0.00.50
34248XXX第一学生宿舍0.502019/12/31 23:45:00茶园+0.00.50

34249 rows × 6 columns

df_merged1 = pd.merge(x21, x26, on='采集时间', how='outer')
df_merged1
水表名_x用量_x采集时间水表名_y用量_y
0XXX第一学生宿舍0.122019/1/1 00:15:00NaNNaN
1XXX第一学生宿舍0.122019/1/1 00:30:00NaNNaN
2XXX第一学生宿舍0.122019/1/1 00:45:00NaNNaN
3XXX第一学生宿舍0.122019/1/1 01:00:00NaNNaN
4XXX第一学生宿舍0.122019/1/1 01:15:00NaNNaN
..................
35034XXX第一学生宿舍0.402019/12/31 22:45:00茶园+0.0
35035XXX第一学生宿舍0.402019/12/31 23:00:00茶园+0.0
35036XXX第一学生宿舍0.502019/12/31 23:15:00茶园+0.0
35037XXX第一学生宿舍0.502019/12/31 23:30:00茶园+0.0
35038XXX第一学生宿舍0.502019/12/31 23:45:00茶园+0.0

35039 rows × 5 columns

df_merged1['用量_y'] = df_merged1['用量_y'].replace(np.nan, 0)
df_merged1
# df_merged1['总用水量'] = df_merged1['用量_x'] + df_merged1['用量_y']
# df_merged1
水表名_x用量_x采集时间水表名_y用量_y总用水量
0XXX第一学生宿舍0.122019/1/1 00:15:00NaN0.00.12
1XXX第一学生宿舍0.122019/1/1 00:30:00NaN0.00.12
2XXX第一学生宿舍0.122019/1/1 00:45:00NaN0.00.12
3XXX第一学生宿舍0.122019/1/1 01:00:00NaN0.00.12
4XXX第一学生宿舍0.122019/1/1 01:15:00NaN0.00.12
.....................
35034XXX第一学生宿舍0.402019/12/31 22:45:00茶园+0.00.40
35035XXX第一学生宿舍0.402019/12/31 23:00:00茶园+0.00.40
35036XXX第一学生宿舍0.502019/12/31 23:15:00茶园+0.00.50
35037XXX第一学生宿舍0.502019/12/31 23:30:00茶园+0.00.50
35038XXX第一学生宿舍0.502019/12/31 23:45:00茶园+0.00.50

35039 rows × 6 columns

df_merged1['总用水量'] = df_merged1['用量_x'] + df_merged1['用量_y']
df_merged1
水表名_x用量_x采集时间水表名_y用量_y总用水量
0XXX第一学生宿舍0.122019/1/1 00:15:00NaN0.00.12
1XXX第一学生宿舍0.122019/1/1 00:30:00NaN0.00.12
2XXX第一学生宿舍0.122019/1/1 00:45:00NaN0.00.12
3XXX第一学生宿舍0.122019/1/1 01:00:00NaN0.00.12
4XXX第一学生宿舍0.122019/1/1 01:15:00NaN0.00.12
.....................
35034XXX第一学生宿舍0.402019/12/31 22:45:00茶园+0.00.40
35035XXX第一学生宿舍0.402019/12/31 23:00:00茶园+0.00.40
35036XXX第一学生宿舍0.502019/12/31 23:15:00茶园+0.00.50
35037XXX第一学生宿舍0.502019/12/31 23:30:00茶园+0.00.50
35038XXX第一学生宿舍0.502019/12/31 23:45:00茶园+0.00.50

35039 rows × 6 columns


相关文章:

数学建模——校园供水系统智能管理

import pandas as pd data1pd.read_excel("C://Users//JJH//Desktop//E//附件_一季度.xlsx") data2pd.read_excel("C://Users//JJH//Desktop//E//附件_二季度.xlsx") data3pd.read_excel("C://Users//JJH//Desktop//E//附件_三季度.xlsx") data4…...

分布式集群——搭建Hadoop环境以及相关的Hadoop介绍

系列文章目录 分布式集群——jdk配置与zookeeper环境搭建 分布式集群——搭建Hadoop环境以及相关的Hadoop介绍 文章目录 前言 一 hadoop的相关概念 1.1 Hadoop概念 补充:块的存储 1.2 HDFS是什么 1.3 三种节点的功能 I、NameNode节点 II、fsimage与edits…...

Python的os.walk()函数使用案例

在Python中,os模块是一个非常实用的工具,它可以让我们与操作系统进行交互,操作文件和目录。在本文中,我们将详细介绍os模块中的遍历文件功能,并通过具体案例和使用场景来解释。 首先,导入os模块。在Pytho…...

学习JAVA打卡第四十五天

StringBuffer类 StringBuffer对象 String对象的字符序列是不可修改的,也就是说,String对象的字符序列的字符不能被修改、删除,即String对象的实体是不可以再发生变化,例如:对于 StringBuffer有三个构造方法&#xff…...

创建K8s pod Webhook

目录 1.前提条件 2.开始创建核心组件Pod的Webhook 2.1.什么是Webhook 2.2.在本地k8s集群安装cert-manager 2.3.创建一个空的文件夹 2.4. 生成工程框架 2.5. 生成核心组件Pod的API 2.6.生成Webhook 2.7.开始实现Webhook相关代码 2.7.1.修改相关配置 2.7.2.修改代码 2…...

抓包-要抓取Spring Boot应用程序的请求

要抓取Spring Boot应用程序的请求,可以按照以下步骤进行操作: 1. 确保你已经按照之前提到的方法设置了Charles代理,并在Charles的SSL代理设置中添加了Spring Boot应用程序的域名。 2. 在Spring Boot应用程序的代码中,添加以下配…...

jmeter+nmon+crontab简单的执行接口定时压测

一、概述 临时接到任务要对系统的接口进行压测,上面的要求就是:压测,并发2000 在不熟悉系统的情况下,按目前的需求,需要做的步骤: 需要有接口脚本需要能监控系统性能需要能定时执行脚本 二、观察 >针…...

ZooKeeper基础命令和Java客户端操作

1、zkCli的常用命令操作 (1)Help (2)ls 使用 ls 命令来查看当前znode中所包含的内容 (3)ls2查看当前节点数据并能看到更新次数等数据 (4)stat查看节点状态 (5&#xf…...

【数据分享】2000-2020年全球人类足迹数据(无需转发\免费获取)

人类足迹(Human Footprint)是生态过程和自然景观变化对生态环境造成的压力,是世界各国对生物多样性和生态保护的关注重点。那如何才能获取长时间跨度的人类足迹时空数据呢? 之前我们分享了来自于中国农业大学土地科学与技术学院的城市环境监测及建模&am…...

基于机器学习的fNIRS信号质量控制方法

摘要 尽管功能性近红外光谱(fNIRS)在神经系统研究中的应用越来越广泛,但fNIRS信号处理仍未标准化,并且受到经验和手动操作的高度影响。在任何信号处理过程的开始阶段,信号质量控制(SQC)对于防止错误和不可靠结果至关重要。在fNIRS分析中&…...

分布式锁的三种实现方式是什么?

分布式锁三种实现方式: 基于数据库实现分布式锁;基于缓存(Redis等)实现分布式锁;基于Zookeeper实现分布式锁; 一, 基于数据库实现分布式锁 悲观锁 利用select … where … for update 排他锁…...

华为云软件精英实战营——感受软件改变世界,享受Coding乐趣

机器人已经在诸多领域显现出巨大的商业价值,华为云计算致力于以云助端的方式为机器人产业带来全新机会 如果您是开发爱好者,想了解华为云,想和其他自由开发者交流经验; 如果您是学生,想和正在从事软件开发行业的大佬…...

贪心算法总结篇

文章转自代码随想录 贪心算法总结篇 我刚刚开始讲解贪心系列的时候就说了,贪心系列并不打算严格的从简单到困难这么个顺序来讲解。 因为贪心的简单题可能往往过于简单甚至感觉不到贪心,如果我连续几天讲解简单的贪心,估计录友们一定会不耐…...

ICCV 2023 | 港中文MMLab: 多帧光流估计模型VideoFlow,首次实现亚像素级别误差

本文提出了一个多帧光流估计模型 VideoFlow,旨在充分挖掘视频中的时序信息和运动规律,避免当前主流方法只以两帧图片作为输入而面临的信息瓶颈,显著提升了光流估计的性能。 在公开的 Sintel Bechmark 上,VideoFlow 在 Clean 和 Fi…...

【python爬虫】—图片爬取

图片爬取 需求分析Python实现 需求分析 从https://pic.netbian.com/4kfengjing/网站爬取图片,并保存 Python实现 获取待爬取网页 def get_htmls(pageslist(range(2, 5))):"""获取待爬取网页"""pages_list []for page in pages:u…...

自动化运维工具—Ansible

一、Ansible概述1.1 Ansible是什么1.2 Ansible的特性1.3 Ansible的特点1.4 Ansible数据流向 二、Ansible 环境安装部署三、Ansible 命令行模块(1)command 模块(2)shell 模块(3)cron 模块(4&…...

uniapp 安卓平台签名证书(.keystore)生成

安装JRE环境 下载jre安装包:https://www.oracle.com/java/technologies/downloads/#java8安装jre安装包时,记录安装目录(例:C:\Program Files\Java\jdk-20)打开命令行(cmd),将JRE安装路径添加到系统环境变量 d: se…...

缓存中间件Redis常考知识点

缓存中间件Redis常考知识点 1 什么是RDB和AOF2 Redis的过期键的删除策略3 简述Redis事务实现4 Redis 主从复制的核⼼原理5 Redis有哪些数据结构?分别有哪些典型的应⽤场景?6 Redis分布式锁底层是如何实现的?7 Redis主从复制的核⼼原理8 Redis…...

detour编译问题及导入visual studio

Detours是经过微软认证的一个开源Hook库,Detours在GitHub上,网址为 https://github.com/Microsoft/Detours 注意版本不一样的话也是会出问题的,因为我之前是vs2022的所以之前的detours.lib不能使用,必须用对应版本的x64 Native To…...

江西武功山旅游攻略(周末两日游)

一、 往返路线 1: 出发路线 周五晚上上海出发坐火车🚄到江西萍乡(11.5小时,卧铺550左右) 打车到江西武功山景区,120-150元左右,人均30元,1小时10分左右到达 或者 🚗到达萍乡北之后 出站后步行200米到长途汽车站,乘旅游巴士直达武功山游…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度​

一、引言:多云环境的技术复杂性本质​​ 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,​​基础设施的技术债呈现指数级积累​​。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...

深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录

ASP.NET Core 是一个跨平台的开源框架,用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录,以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...

Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?

Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以? 在 Golang 的面试中,map 类型的使用是一个常见的考点,其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

逻辑回归:给不确定性划界的分类大师

想象你是一名医生。面对患者的检查报告(肿瘤大小、血液指标),你需要做出一个**决定性判断**:恶性还是良性?这种“非黑即白”的抉择,正是**逻辑回归(Logistic Regression)** 的战场&a…...

MMaDA: Multimodal Large Diffusion Language Models

CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

什么是库存周转?如何用进销存系统提高库存周转率?

你可能听说过这样一句话: “利润不是赚出来的,是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业,很多企业看着销售不错,账上却没钱、利润也不见了,一翻库存才发现: 一堆卖不动的旧货…...

全志A40i android7.1 调试信息打印串口由uart0改为uart3

一,概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本:2014.07; Kernel版本:Linux-3.10; 二,Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01),并让boo…...

MySQL用户和授权

开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务: test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...

3-11单元格区域边界定位(End属性)学习笔记

返回一个Range 对象,只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意:它移动的位置必须是相连的有内容的单元格…...

AI,如何重构理解、匹配与决策?

AI 时代,我们如何理解消费? 作者|王彬 封面|Unplash 人们通过信息理解世界。 曾几何时,PC 与移动互联网重塑了人们的购物路径:信息变得唾手可得,商品决策变得高度依赖内容。 但 AI 时代的来…...