当前位置: 首页 > news >正文

时序预测 | MATLAB实现SSA-XGBoost(麻雀算法优化极限梯度提升树)时间序列预测

时序预测 | MATLAB实现SSA-XGBoost(麻雀算法优化极限梯度提升树)时间序列预测

目录

    • 时序预测 | MATLAB实现SSA-XGBoost(麻雀算法优化极限梯度提升树)时间序列预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

Matlab实现SSA-XGBoost时间序列预测,麻雀算法优化极限梯度提升树,优化最大迭代次数,深度,学习率;
1.data为数据集,单变量时间序列数据集。
2.MainSSAXGBoostTS.m为主程序文件,其他为函数文件,无需运行;
3.评价指标R2、MAE、MAPE、MSE、MBE;
4.注意程序和数据放在一个文件夹,文件夹不可以XGBoost命名,因为有函数已经用过,运行环境为Matlab2018及以上。

模型描述

麻雀搜索算法(Sparrow Search Algorithm, SSA)是于2020年提出的。SSA 主要是受麻雀的觅食行为和反捕食行为的启发而提出的。该算法比较新颖,具有寻优能力强,收敛速度快的优点。 算法流程:
Step1: 初始化种群,迭代次数,初始化捕食者和加入者比列。
Step2:计算适应度值,并排序。
Step3:利用式(3)更新捕食者位置。
Step4:利用式(4)更新加入者位置。
Step5:利用式(5)更新警戒者位置。
Step6:计算适应度值并更新麻雀位置。
Step7:是否满足停止条件,满足则退出,输出结果,否则,重复执行Step2-6;
xgboost是属于boosting家族,是GBDT算法的一个工程实现,在模型的训练过程中是聚焦残差,在目标函数中使用了二阶泰勒展开并加入了正则,在决策树的生成过程中采用了精确贪心的思路,寻找最佳分裂点的时候,使用了预排序算法,对所有特征都按照特征的数值进行预排序,然后遍历所有特征上的所有分裂点位,计算按照这些候选分裂点位分裂后的全部样本的目标函数增益,找到最大的那个增益对应的特征和候选分裂点位,从而进行分裂。
这样一层一层的完成建树过程, xgboost训练的时候,是通过加法的方式进行训练,也就是每一次通过聚焦残差训练一棵树出来,最后的预测结果是所有树的加和表示。

本次优化的参数包括最大迭代次数,深度,学习率。

程序设计

  • 完整代码和数据下载:MATLAB实现SSA-XGBoost(麻雀算法优化极限梯度提升树)时间序列预测
P_percent = 0.2;    % The population size of producers accounts for "P_percent" percent of the total population size       %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
pNum = round( pop *  P_percent );    % The population size of the producers   lb= c.*ones( 1,dim );    % Lower limit/bounds/     a vector
ub= d.*ones( 1,dim );    % Upper limit/bounds/     a vector
%Initialization
for i = 1 : popx( i, : ) = lb + (ub - lb) .* rand( 1, dim );  fit( i ) = fobj( x( i, : ) ) ;                       
end
pFit = fit;                      
pX = x;                            % The individual's best position corresponding to the pFit
[ fMin, bestI ] = min( fit );      % fMin denotes the global optimum fitness value
bestX = x( bestI, : );             % bestX denotes the global optimum position corresponding to fMin% Start updating the solutions.
%
for t = 1 : M    [ ans, sortIndex ] = sort( pFit );% Sort.[fmax,B]=max( pFit );worse= x(B,:);  r2=rand(1);for i = 1 : pNum  %r2小于0.8的发现者的改变(1-20% Equation (3)r1=rand(1);x( sortIndex( i ), : ) = pX( sortIndex( i ), : )*exp(-(i)/(r1*M));%对自变量做一个随机变换x( sortIndex( i ), : ) = Bounds( x( sortIndex( i ), : ), lb, ub );%对超过边界的变量进行去除fit( sortIndex( i ) ) = fobj( x( sortIndex( i ), : ) );   %就算新的适应度值x( sortIndex( i ), : ) = pX( sortIndex( i ), : )+randn(1)*ones(1,dim);x( sortIndex( i ), : ) = Bounds( x( sortIndex( i ), : ), lb, ub );fit( sortIndex( i ) ) = fobj( x( sortIndex( i ), : ) );endend
%---------------------------------------------------------------------------------------------------------------------------%%%%%%%%%%%%%5%%%%%%这一部位为加入者(追随者)的位置更新%%%%%%%%%%%%%%%%%%%%%%%%%for i = ( pNum + 1 ) : pop     %剩下20-100的个体的变换                % Equation (4)A=floor(rand(1,dim)*2)*2-1;if( i>(pop/2))%这个代表这部分麻雀处于十分饥饿的状态(因为它们的能量很低,也是是适应度值很差),需要到其它地方觅食x( sortIndex(i ), : )=randn(1)*exp((worse-pX( sortIndex( i ), : ))/(i)^2);else%这一部分追随者是围绕最好的发现者周围进行觅食,其间也有可能发生食物的争夺,使其自己变成生产者x( sortIndex( i ), : )=bestXX+(abs(( pX( sortIndex( i ), : )-bestXX)))*(A'*(A*A')^(-1))*ones(1,dim);  end  end%%%%%%%%%%%%%5%%%%%%这一部位为意识到危险(注意这里只是意识到了危险,不代表出现了真正的捕食者)的麻雀的位置更新%%%%%%%%%%%%%%%%%%%%%%%%%c=randperm(numel(sortIndex));%%%%%%%%%这个的作用是在种群中随机产生其位置(也就是这部分的麻雀位置一开始是随机的,意识到危险了要进行位置移动,%处于种群外围的麻雀向安全区域靠拢,处在种群中心的麻雀则随机行走以靠近别的麻雀)
%---------------------------------------------------------------------------------------------------------------------------x( sortIndex( b(j) ), : )=bestX+(randn(1,dim)).*(abs(( pX( sortIndex( b(j) ), : ) -bestX)));else                       %处于种群中心的麻雀的位置改变x( sortIndex( b(j) ), : ) =pX( sortIndex( b(j) ), : )+(2*rand(1)-1)*(abs(pX( sortIndex( b(j) ), : )-worse))/ ( pFit( sortIndex( b(j) ) )-fmax+1e-50);endx( sortIndex(b(j) ), : ) = Bounds( x( sortIndex(b(j) ), : ), lb, ub );fit( sortIndex( b(j) ) ) = fobj( x( sortIndex( b(j) ), : ) );endfor i = 1 : pop if ( fit( i ) < pFit( i ) )pFit( i ) = fit( i );pX( i, : ) = x( i, : );endendendConvergence_curve(t)=fMin;end%---------------------------------------------------------------------------------------------------------------------------
% Application of simple limits/bounds
function s = Bounds( s, Lb, Ub)% Apply the lower bound vector%---------------------------------------------------------------------------------------------------------------------------  % Apply the upper bound vector J = temp > Ub;temp(J) = Ub(J);% Update this new move s = temp;%---------------------------------------------------------------------------------------------------------------------------

参考资料

[1] https://blog.csdn.net/category_11833757.html?spm=1001.2014.3001.5482
[2] https://blog.csdn.net/article/details/125125787
[3] https://blog.csdn.net/article/details/124928579

相关文章:

时序预测 | MATLAB实现SSA-XGBoost(麻雀算法优化极限梯度提升树)时间序列预测

时序预测 | MATLAB实现SSA-XGBoost(麻雀算法优化极限梯度提升树)时间序列预测 目录 时序预测 | MATLAB实现SSA-XGBoost(麻雀算法优化极限梯度提升树)时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 Matlab实现SSA-XGBoost时间序列预测&#xff0c;麻…...

leetcode 823 带因子的二叉树

用动态规划 如果两个节点值不同,要乘2&#xff0c;因为两个节点可以互换位置 dp[i] dp[left] * dp[right] * 2 如果相同 dp[i] dp[left] * dp[right] class Solution {public int numFactoredBinaryTrees(int[] arr) {Arrays.sort(arr);int n arr.length;long[] dp ne…...

钉钉消息已读、未读咋实现的嘞?

前言 一款app&#xff0c;消息页面有&#xff1a;钱包通知、最近访客等各种通知类别&#xff0c;每个类别可能有新的通知消息&#xff0c;实现已读、未读功能&#xff0c;包括多少个未读&#xff0c;这个是怎么实现的呢&#xff1f;比如用户A访问了用户B的主页&#xff0c;难道…...

Java 读取TIFF JPEG GIF PNG PDF

Java 读取TIFF JPEG GIF PNG PDF 本文解决方法基于开源 tesseract 下载适合自己系统版本的tesseract &#xff0c;官网链接&#xff1a;https://digi.bib.uni-mannheim.de/tesseract/ 2. 下载之后安装&#xff0c;安装的时候选择选择语言包&#xff0c;我选择了中文和英文 3.…...

研磨设计模式day14模板方法模式

目录 场景 原有逻辑 有何问题 解决方案 解决思路 代码实现 重写示例 模板方法的优缺点 模板方法的本质 何时选用 场景 现在模拟一个场景&#xff0c;两个人要登录一个系统&#xff0c;一个是管理员一个是用户&#xff0c;这两个不同身份的登录是由后端对应的两个接…...

7 集群基本测试

1. 上传小文件到集群 在hadoop路径下执行命令创建一个文件夹用于存放即将上传的文件&#xff1a; [atguiguhadoop102 ~]$ hadoop fs -mkdir /input上传&#xff1a; [atguiguhadoop102 hadoop-3.1.3]$ hadoop fs -put wcinput/work.txt /input2.上传大文件 [atguiguhadoop1…...

chrono学习(一)

我想用chrono进行沙土的仿真&#xff0c;首先学习demo_GPU_ballCosim.cpp&#xff0c;这个例子仿真了一些沙土的沉降过程。 首先&#xff0c;运行编辑完成的文件demo_GPU_ballCosim&#xff1a; (base) eowyneowyn-MS-7D20:~/build_chrono/bin$ ./demo_GPU_ballCosim 运行完得…...

后端面试话术集锦第 十 篇:springMVC面试话术

这是后端面试集锦第十篇博文——springMVC面试话术❗❗❗ 1. 介绍一下springMVC springmvc是一个视图层框架,通过MVC模型让我们很方便的接收和处理请求和响应。 我给你说说他里边的几个核心组件吧: 它的核心控制器是DispatcherServlet,他的作用是接收用户请求,然后给用户…...

基于Django 框架搭建的机器学习在线平台源代码+数据库,实现KNN、ID3、C4.5、SVM、朴素贝叶斯、BP神经网络等算法及流程管理

结果展示&#xff08;Kmeans&#xff09;&#xff1a; 完整代码下载地址&#xff1a;基于Django 框架搭建的机器学习在线平台源代码数据库 python机器学习之 K-邻近算法 简单的理解&#xff1a;[ 采用测量不同特征值之间的距离方法进行分类 ] 优点 &#xff1a;精度高、对异常…...

大数据组件-Flume集群环境搭建

&#x1f947;&#x1f947;【大数据学习记录篇】-持续更新中~&#x1f947;&#x1f947; 个人主页&#xff1a;beixi 本文章收录于专栏&#xff08;点击传送&#xff09;&#xff1a;【大数据学习】 &#x1f493;&#x1f493;持续更新中&#xff0c;感谢各位前辈朋友们支持…...

想系列服务迁移专有云效实操

想系列服务迁移专有云效实操 1注册应用 查看jenkins脚本是否需要修改代码编译路径 gemdale_jenkins/maven3-service/k8s-image/maven3-service-deploy.sh Jenkins上的打包路径 service_tgt_path s e r v i c e w s / t a r g e t / service_ws/target/ servicew​s/target/ser…...

2020 牛客多校第三场 C Operation Love (叉积判断顺逆时针)

2020 牛客多校第三场 (叉积判断顺逆时针) Operation Love 大意&#xff1a; 给出一个手型 &#xff0c; 每个手型都有 20 个点 &#xff0c;手型有可能旋转后给出 &#xff0c; 但不会放大和缩小 . 手型点集有可能顺时针给出也可能逆时针给出 &#xff0c; 判断给出的是左手还…...

基于OFDM的水下图像传输通信系统matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 function [rx_img] func_TR(tx_img, num_path, pathdelays, pathgains, snr) rng(default); …...

Docsify + Gitalk详细配置过程讲解

&#x1f496; 作者简介&#xff1a;大家好&#xff0c;我是Zeeland&#xff0c;开源建设者与全栈领域优质创作者。&#x1f4dd; CSDN主页&#xff1a;Zeeland&#x1f525;&#x1f4e3; 我的博客&#xff1a;Zeeland&#x1f4da; Github主页: Undertone0809 (Zeeland)&…...

React中的setState的执行机制

文章目录 前言setState是什么?更新类型批量更新后言 前言 在 React 中&#xff0c;setState 是用于更新组件状态的方法。它是一个异步操作 值得注意的是&#xff0c;由于 setState 是异步的&#xff0c;所以在调用 setState 后立即访问 this.state 可能得到的还是旧的状态值。…...

2023最新任务悬赏平台源码uniapp+Thinkphp新款悬赏任务地推拉新充场游戏试玩源码众人帮威客兼职任务帮任务发布分销机

新款悬赏任务地推拉新充场游戏试玩源码众人帮威客兼职任务帮任务发布分销机制 后端是&#xff1a;thinkphpFastAdmin 前端是&#xff1a;uniapp 1.优化首页推荐店铺模块如有则会显示此模块没有则隐藏。 2修复首页公告&#xff0c;更改首页公告逻辑。&#xff08;后台添加有公…...

微服务事务管理(Dubbo)

Seata 是什么 Seata 是一款开源的分布式事务解决方案&#xff0c;致力于提供高性能和简单易用的分布式事务服务。Seata 将为用户提供了 AT、TCC、SAGA 和 XA 事务模式&#xff0c;为用户打造一站式的分布式解决方案。 一、示例架构说明 可在此查看本示例完整代码地址&#x…...

Springboot整合ClickHouse

一、快速开始 1、添加依赖 <dependency><groupId>ru.yandex.clickhouse</groupId><artifactId>clickhouse-jdbc</artifactId><version>0.3.1-patch</version> </dependency> <dependency><groupId>com.alibaba&…...

【材料整理】-- Python、Matlab中常用调试代码,持续更新!

文章目录 Python、Matlab中常用调试代码&#xff0c;持续更新&#xff01;一、Python常用调试代码&#xff1a;二、Matlab常用调试代码&#xff1a; Python、Matlab中常用调试代码&#xff0c;持续更新&#xff01; 一、Python常用调试代码&#xff1a; 1、保存.mat文件 from…...

什么是同源策略(same-origin policy)?它对AJAX有什么影响?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 同源策略&#xff08;Same-Origin Policy&#xff09;与 AJAX 影响⭐ 同源策略的限制⭐ AJAX 请求受同源策略影响⭐ 跨域资源共享&#xff08;CORS&#xff09;⭐ 写在最后 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 记…...

视频汇聚/视频云存储/视频监控管理平台EasyCVR接入海康SDK协议后无法播放该如何解决?

开源EasyDarwin视频监控/安防监控/视频汇聚EasyCVR能在复杂的网络环境中&#xff0c;将分散的各类视频资源进行统一汇聚、整合、集中管理&#xff0c;在视频监控播放上&#xff0c;视频安防监控汇聚平台可支持1、4、9、16个画面窗口播放&#xff0c;可同时播放多路视频流&#…...

CSC2121A

半桥架构的栅极驱动电路CSC2121A CSC2121系列是一款高性价比的半桥架构的栅极驱动专用电路&#xff0c;用于大功率MOS管、IGBT管栅极驱动。IC内部集成了逻辑信号处理电路、死区时间控制电路、欠压保护电路、电平位移电路、脉冲滤波电路及输出驱动电路&#xff0c;专用于无刷电…...

高级进程编程-系统调用-创建守护进程

系统调用 API 参考&#xff1a;用时现查 如何在Linux下的进行多进程编程&#xff08;初步&#xff09; - 知乎 (zhihu.com)。 Linux 下系统调用的三种方法_海风林影的博客-CSDN博客。 linux系统调用(持续更新....)_tiramisu_L的博客-CSDN博客。 通过 glibc 提供的库函数、…...

Redis之发布订阅

一、Redis的发布订阅 Redis的发布与订阅功能由PUBLISH、SUBSCRIBE、PSUBSCRIBE等命令组成。通过执行SUBSCRIBE命令&#xff0c;客户端可以订阅一个或多个频道&#xff0c;从而成为这些频道的订阅者&#xff08;subscriber&#xff09;&#xff1a;每当有其他客户端向被订阅的频…...

交换机 路由器的常见指令

常用的指令 交换机和路由器是网络中最常见的设备之一&#xff0c;它们都有一些常用的指令。下面是它们的常用指令和解释&#xff1a; 交换机常用指令 show interfaces&#xff1a;显示交换机上的所有接口信息&#xff0c;包括状态、速率、错误信息等。show mac-address-tabl…...

Matlab 基本教程

1 清空环境变量及命令 clear all % 清除Workspace 中的所有变量 clc % 清除Command Windows 中的所有命令 2 变量命令规则 &#xff08;1&#xff09;变量名长度不超过63位 &#xff08;2&#xff09;变量名以字母开头&#xff0c; 可以由字母、数字和下划线…...

现浇钢筋混泥土楼板施工岗前安全VR实训更安全高效

建筑行业天天与钢筋混凝土砼在&#xff0c;安全施工便成了企业发展的头等大事。 当今社会&#xff0c;人人都奉行生命无价&#xff0c;安全至上。可工地安全事故频繁发生&#xff0c;吞噬掉多少宝贵生命。破坏了多小个家庭?痛定死痛&#xff0c;为了提高施工人员的安全意识。 …...

ARDUINO STM32 SSD1306

STM32F103XX系列SPI接口位置 在ARUDINO 下&#xff0c;&#xff08;不需要设置引脚功能&#xff0c;不需要开启时钟设置&#xff0c;ARDUINO已经帮我们处理了&#xff09; stm32f103c6t6 flash不足&#xff0c;不足以运行U8G2,产生错误 改用U8X8&#xff0c;后将字体改为u8x8_…...

临时抱佛脚

马上就要面试了&#xff0c;心里面比较紧张&#xff5e; 交换型数据结构 在进行网络消息处理的时候&#xff0c;经常会对发送过来的消息进行读写操作。采用普通的方法&#xff0c;需要将读到消息频繁的进行copy操作&#xff0c;这样无疑会降低系统的效率。交换型数据机构指的…...

城市内涝积水监测预警系统 yolov8

城市内涝积水监测预警系统通过yolov8网络深度学习框架&#xff0c;算法一旦识别到道路出现积水&#xff0c;城市内涝积水监测预警系统会立即发出预警信号。并及时通知相关人员。YOLO检测速度非常快。标准版本的YOLO可以每秒处理 45 张图像&#xff1b;YOLO的极速版本每秒可以处…...