通过python 获取当前局域网内存在的IP和MAC
通过python 获取当前局域网内存在的ip
'''
通过ipconfig /all 命令获取局域网所在的网段
通过arp -d *命令清空当前所有的arp映射表
循环遍历当前网段所有可能的ip与其ping一遍建立arp映射表
for /L %i IN (1,1,254) DO ping -w 1 -n 1 192.168.3.%i
通过arp -a命令读取缓存的映射表获取所有与本机连接的设备的Mac地址。
'''
import os
import re
import time
from concurrent.futures import ThreadPoolExecutor, wait, ALL_COMPLETED
import psutil# 逻辑cpu个数
count = psutil.cpu_count()
print("cpu个数:",str(count))
import pandas as pd
def get_net_segment():with os.popen("arp -a") as res:for line in res:line = line.strip()if line.startswith("接口"):net_segment = re.findall("(\d+\.\d+\.\d+)\.\d+", line)[0]breakreturn net_segment
def ping_net_segment_all(net_segment):# for i in range(1, 255):# os.system(f"ping -w 1 -n 1 {net_segment}.{i}")# 多线程并发 5个线程时耗时是30秒,8个线程是28秒with ThreadPoolExecutor(max_workers=4) as executor:for i in range(1, 255):executor.submit(os.popen, f"ping -w 1 -n 1 {net_segment}.{i}")
def get_arp_ip_mac():header = Nonelist1 = []#os.system('arp -a > temp11.txt')with os.popen("arp -a") as res:for line in res:line = line.strip() if not line or line.startswith("接口"):continueif header is None: header = re.split(" {2,}", line.strip())line1 = re.split(" {2,}", line.strip())list1.append(line1)df = pd.DataFrame(list1,columns=header)return df
def ping_ip_list(ips, max_workers=4):print("正在扫描在线列表")with ThreadPoolExecutor(max_workers=max_workers) as executor:future_tasks = []for ip in ips:future_tasks.append(executor.submit(os.popen, f"ping -w 1 -n 1 {ip}"))wait(future_tasks, return_when=ALL_COMPLETED)
if __name__ == '__main__':# 是否进行初始扫描init_search = True #Falseif init_search:print("正在扫描当前网段所有ip,预计耗时1分钟....")ping_net_segment_all(get_net_segment())last = Nonewhile 1:df = get_arp_ip_mac()df = df.loc[df.类型 == "动态", ["Internet 地址", "物理地址"]]if last is None:print("当前在线的设备:")print(df)else:online = df.loc[~df.物理地址.isin(last.物理地址)]if online.shape[0] > 0:print("新上线设备:")print(online)offline = last[~last.物理地址.isin(df.物理地址)]if offline.shape[0] > 0:print("刚下线设备:")print(offline)time.sleep(5)ping_ip_list(df["Internet 地址"].values)last = df相关文章:
通过python 获取当前局域网内存在的IP和MAC
通过python 获取当前局域网内存在的ip 通过ipconfig /all 命令获取局域网所在的网段 通过arp -d *命令清空当前所有的arp映射表 循环遍历当前网段所有可能的ip与其ping一遍建立arp映射表 for /L %i IN (1,1,254) DO ping -w 1 -n 1 192.168.3.%i 通过arp -a命令读取缓存的映射表…...
解决D盘的类型不是基本,而是动态的问题
一、正确的图片 1.1图片 1.2本人遇到的问题 二、将动态磁盘 转为基本盘 2.1 基本概念,动态无法转化为基本,不是双向的,借助软件 网址:转换动态磁盘到普通磁盘_检测到计算机本地磁盘为动态分区_卫水金波的博客-CSDN博客 2.2分区…...
如何判断自己的qt版本呢?
如何判断自己的qt版本呢? 前情提要很简单,按照如下图所示,即可查看当前打开的qtCreator的版本如何打开5.15.2版本的qtCreator呢?安装教程 前情提要 我的电脑已经安装了qt5.14.1,然后我又安装了qt5.15.2,我想尝试一下同一台电脑能否适应两个版本的qt? 当我安装完成qt5.15.2后…...
【文心一言大模型插件制作初体验】制作面试错题本大模型插件
文心一言插件开发初体验 效果图 注意:目前插件仅支持在本地运行,虽然只能自用,但仍然是一个不错的选择。(什么?你说没有用?这不可能!文心一言app可以支持语音,网页端结合手机端就可…...
ROS 2官方文档(基于humble版本)学习笔记(二)
ROS 2官方文档(基于humble版本)学习笔记(二) 理解节点(node)ros2 runros2 node list重映射(remap)ros2 node info 理解话题(topic)rqt_graphros2 topic listr…...
excel中公式结合实际的数据提取出公式计算的分支
要在Excel中使用公式结合实际数据提取分支信息,您可以使用一些文本函数和条件函数来实现这个目标。以下是一个示例,假设您有一个包含银行交易描述的列A,想要从中提取分支信息: 假设交易描述的格式是"分行名称-交易类型"…...
3D模型优化实战:LowPoly、纹理烘焙及格式转换
在快节奏的游戏和虚拟/增强现实 (VR/AR) 世界中,3D 模型的优化在提供引人入胜的体验方面发挥着关键作用。 这门学科不仅仅是创造令人着迷的图形结构; 这是视觉质量和游戏流畅性之间的平衡问题,确保细致而流畅的游戏环境。 通过低多边形建模等…...
genome comparison commend 2 MCMCtree
仅本人练习使用!!后续会逐渐修改!! mcmctree估算物种分歧时间 - 简书 https://www.cnblogs.com/bio-mary/p/12818888.html 估算系统树分歧时间 —— paml.mcmctree,r8s | 生信技工 http://www.chenlianfu.com/?p2948 4. 使用PAM…...
Linux安装JenkinsCLI
项目简介安装目录 mkdir -p /opt/jenkinscli && cd /opt/jenkinscli JenkinsCLI下载 wget http://<your-jenkins-server>/jnlpJars/jenkins-cli.jar # <your-jenkins-server> 替换为你的 Jenkins 服务器地址 JenkinsCLI授权 Dashboard-->Configure Glob…...
Midjourney学习(一)prompt的基础
prompt目录 sd和mj的比较prompt组成风格表现风格时代描述表情色彩情绪环境 sd和mj的比较 自从去年9月份开始,sd就变得非常或火,跟它一起的还有一个midjourney。 他们就像是程序界的两种模式,sd是开源的,有更多的可能性更可控。但是…...
12 权重衰退
过拟合的应对方法——weight_decay 权重衰退是最广泛使用的正则化方法之一。 模型容量受参数个数和参数范围影响,通过L2正则项限制w的取值范围,权重w每次更新乘以小于1的数,w的数值范围不会太大,从而降低模型复杂度,…...
简化测试流程,提供卓越服务:TestComplete+Salesforce满足不断发展的企业的需求
2015年,一群前Salesforce员工发现了病毒防护市场中的一个空白:Salesforce不会对文档进行威胁扫描。为了填补这一空白,他们创建了一个平台,并以该平台作为中心帮助公司保护所有的企业云SaaS系统,使其免受威胁。这个平台…...
kafka 命令脚本说明以及在java中使用
一、命令行使用 1.1、topic 命令 1、关于topic,这里用window 来示例 bin\windows\kafka-topics.bat2、创建 first topic,五个分区,1个副本 bin\windows\kafka-topics.bat --bootstrap-server localhost:9092 --create --partitions 5 --replication-factor 1 -…...
Qt应用开发(基础篇)——文件选择对话框 QFileDialog
一、前言 QFileDialog类继承于QDialog,提供了一个允许用户选择文件或目录的对话框。 对话框窗口 QDialog QFileDialog文件选择对话框允许用户在当前文件系统中选择一个或者多个文件或者文件路径,使用静态函数创建是很简便的方式,比如…...
图像OCR转文字,验证码识别技术太疯狂-UI软件自动化
现在用PYTHON识别图片文字,PaddleOCR,Tesseract,Opencv等很多开源技术。知识大爆炸年代,几年不学习就跟不上时代了。 以前早的时候一个验证码图片上有4个不同颜色字符,带一些杂点,我写点代码按颜色最多的进行提取&…...
Docker:自定义镜像
(总结自b站黑马程序员课程) 环环相扣,跳过部分章节和知识点是不可取的。 一、镜像结构 镜像是分层结构,每一层称为一个Layer。 ①BaseImage层:包含基本的系统函数库、环境变量、文件系统。 ②Entrypoint࿱…...
【Nginx22】Nginx学习:FastCGI模块(四)错误处理及其它
Nginx学习:FastCGI模块(四)错误处理及其它 FastCGI 最后一篇,我们将学习完剩下的所有配置指令。在这里,错误处理还是单独拿出来成为一个小节了,而剩下的内容都放到其它中进行学习。不要感觉是其它的就没用了…...
轮毂电机单位换算-米每秒/转每分
先前写了一篇度/S和RPM的关系 这次补全一点 假设轮毂电机直径20CM 0.2M 周长为0.628M 0.2*3.14 轮子转一圈走0.628M 1RPM的单位是转/分 换成转/S 就除以60 也就是轮子转一圈的速度0.628/60 m/S 0.010467m/S 所以换算如下: 1RPM0.010467 m/S 那么1m/S1/(0.010467) RPM95.5RPM 如…...
博流RISC-V芯片BL616开发环境搭建
文章目录 1、工具安装2、代码下载3、环境变量配置4、下载交叉编译器5、编译与下载运行6、使用ninja编译 本文分别介绍博流RISC-V芯片 BL616 在 Windows和Linux 下开发环境搭建,本文同时适用BL618,BL602,BL702,BL808系列芯片。 1、…...
Weblogic漏洞(三)之 Weblogic 弱口令、任意文件读取漏洞
Weblogic 弱口令、任意文件读取漏洞 环境安装 此次我们实验的靶场,是vnlhub中的Weblogic漏洞中的weak_password靶场,我们 cd 到weak_password,然后输入以下命令启动靶场环境: docker-compose up -d输入以下的命令可以查看当前启…...
在软件开发中正确使用MySQL日期时间类型的深度解析
在日常软件开发场景中,时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志,到供应链系统的物流节点时间戳,时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库,其日期时间类型的…...
关于nvm与node.js
1 安装nvm 安装过程中手动修改 nvm的安装路径, 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解,但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后,通常在该文件中会出现以下配置&…...
【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力
引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...
cf2117E
原题链接:https://codeforces.com/contest/2117/problem/E 题目背景: 给定两个数组a,b,可以执行多次以下操作:选择 i (1 < i < n - 1),并设置 或,也可以在执行上述操作前执行一次删除任意 和 。求…...
让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...
R语言速释制剂QBD解决方案之三
本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...
音视频——I2S 协议详解
I2S 协议详解 I2S (Inter-IC Sound) 协议是一种串行总线协议,专门用于在数字音频设备之间传输数字音频数据。它由飞利浦(Philips)公司开发,以其简单、高效和广泛的兼容性而闻名。 1. 信号线 I2S 协议通常使用三根或四根信号线&a…...
windows系统MySQL安装文档
概览:本文讨论了MySQL的安装、使用过程中涉及的解压、配置、初始化、注册服务、启动、修改密码、登录、退出以及卸载等相关内容,为学习者提供全面的操作指导。关键要点包括: 解压 :下载完成后解压压缩包,得到MySQL 8.…...
自然语言处理——文本分类
文本分类 传统机器学习方法文本表示向量空间模型 特征选择文档频率互信息信息增益(IG) 分类器设计贝叶斯理论:线性判别函数 文本分类性能评估P-R曲线ROC曲线 将文本文档或句子分类为预定义的类或类别, 有单标签多类别文本分类和多…...
QT开发技术【ffmpeg + QAudioOutput】音乐播放器
一、 介绍 使用ffmpeg 4.2.2 在数字化浪潮席卷全球的当下,音视频内容犹如璀璨繁星,点亮了人们的生活与工作。从短视频平台上令人捧腹的搞笑视频,到在线课堂中知识渊博的专家授课,再到影视平台上扣人心弦的高清大片,音…...
