当前位置: 首页 > news >正文

代码随想录 - Day30 - 修剪二叉树,转换二叉树 + 二叉树总结

代码随想录 - Day30 - 修剪二叉树,转换二叉树 + 二叉树总结

669. 修剪二叉搜索树

有点像是删除二叉搜索树的变形,改变了删除条件而已。
递归法:

class Solution:def trimBST(self, root: Optional[TreeNode], low: int, high: int) -> Optional[TreeNode]:if not root:return rootif root.val < low:      # 当前节点小于low,不用再看其左子树,遍历其右子树即可right = self.trimBST(root.right, low, high)return rightif root.val > high:     # 当前节点大于high,不用再看其右子树,遍历其左子树即可left = self.trimBST(root.left, low, high)return leftroot.left = self.trimBST(root.left, low, high)      # root.left接入符合条件的左孩子root.right = self.trimBST(root.right, low, high)    # root.right接入符合条件的右孩子return root

迭代法:

'''
在剪枝的时候,可以分为三步:
将root移动到[L, R] 范围内,注意是左闭右闭区间
剪枝左子树
剪枝右子树
'''
class Solution:def trimBST(self, root: Optional[TreeNode], low: int, high: int) -> Optional[TreeNode]:if not root:return root# 处理头节点,把头结点放到[low, high]范围内while root and (root.val < low or root.val > high):if root.val < low:      # 小于low往右走root = root.rightelse:                   # 大于high往左走root = root.leftcurleft, curright = root, root# 处理左孩子元素小于low的情况while curleft:while curleft.left and curleft.left.val < low:curleft.left = curleft.left.rightcurleft = curleft.left# 处理右孩子元素大于high的情况while curright:while curright.right and curright.right.val > high:curright.right = curright.right.leftcurright = curright.rightreturn root

108. 将有序数组转换为二叉搜索树

对于奇数长度的数组可以直接取中点,对于偶数长度的数组则需要用mid = int(left + ((right - left) / 2))
中点作为根节点,左右两侧则分别为左子树和右子树,依次进行递归遍历。

class Solution:# 左闭右闭区间[left, right]def traversal(self, nums, left, right):if left > right:return Nonemid = int(left + ((right - left) / 2))      # 防止越界root = TreeNode(nums[mid])root.left = self.traversal(nums, left, mid - 1)root.right = self.traversal(nums, mid + 1, right)return rootdef sortedArrayToBST(self, nums: List[int]) -> Optional[TreeNode]:root = self.traversal(nums, 0, len(nums) - 1)return root

迭代法:用队列模拟递归过程

from collections import dequeclass Solution:def sortedArrayToBST(self, nums: List[int]) -> TreeNode:if len(nums) == 0:return Noneroot = TreeNode(0)  # 初始根节点nodeQue = deque()   # 放遍历的节点leftQue = deque()   # 保存左区间下标rightQue = deque()  # 保存右区间下标nodeQue.append(root)               # 根节点入队列leftQue.append(0)                  # 0为左区间下标初始位置rightQue.append(len(nums) - 1)     # len(nums) - 1为右区间下标初始位置while nodeQue:curNode = nodeQue.popleft()left = leftQue.popleft()right = rightQue.popleft()mid = left + (right - left) // 2curNode.val = nums[mid]     # 将mid对应的元素给中间节点if left <= mid - 1:         # 处理左区间curNode.left = TreeNode(0)nodeQue.append(curNode.left)leftQue.append(left)rightQue.append(mid - 1)if right >= mid + 1:        # 处理右区间curNode.right = TreeNode(0)nodeQue.append(curNode.right)leftQue.append(mid + 1)rightQue.append(right)return root

538. 把二叉搜索树转换为累加树

题目中的累加是右中左的顺序进行累加,从最大的节点值累加到最小的节点值。
所以要反中序遍历该二叉树,然后顺序累加。
需要一个pre指针记录当前节点的前一个节点,这样才能方便累加。

class Solution:def traversal(self, cur):       # 右中左遍历if not cur:                 # 终止条件returnself.traversal(cur.right)   # 右cur.val += self.pre         # 中self.pre = cur.valself.traversal(cur.left)    # 左def convertBST(self, root: Optional[TreeNode]) -> Optional[TreeNode]:self.pre = 0                # 记录前一个节点的数值self.traversal(root)return root

或者写成这样也可以:

class Solution:def __init__(self):               # 记录前一个节点的数值self.pre = 0def convertBST(self, root: Optional[TreeNode]) -> Optional[TreeNode]:if not root:                  # 终止条件returnself.convertBST(root.right)   # 右root.val += self.pre          # 中self.pre = root.valself.convertBST(root.left)    # 左return root

迭代法:

class Solution:def convertBST(self, root: Optional[TreeNode]) -> Optional[TreeNode]:if not root: return rootstack = []result = []cur = rootpre = 0         # 记录前一个节点的数值while cur or stack:if cur:                 # 右stack.append(cur)cur = cur.rightelse: cur = stack.pop()   # 中cur.val+= prepre = cur.valcur =cur.left       # 左return root

总结

二叉树这块的题目大部分可以通过递归和迭代两种方式来解决。
当遇到二叉搜索树时,可以利用其特性来简化代码。

对不同题目选择合适的遍历方式:

  • 涉及到二叉树的构造,无论普通二叉树还是二叉搜索树一定前序,都是先构造中节点。
  • 求普通二叉树的属性,一般是后序,一般要通过递归函数的返回值做计算。
  • 求二叉搜索树的属性,一定是中序了,要不白瞎了有序性了。

二叉树的遍历方式(递归和迭代)+层序遍历,必须要掌握。
要知道深度优先(前中后序遍历)和广度优先(层序遍历)对应哪些遍历方式。

关键是要掌握解决问题的方法,熟悉代码,理解题目。

二叉树的题就先做到这里,今天再看一下回溯算法的基础,明天开始做题。

相关文章:

代码随想录 - Day30 - 修剪二叉树,转换二叉树 + 二叉树总结

代码随想录 - Day30 - 修剪二叉树&#xff0c;转换二叉树 二叉树总结 669. 修剪二叉搜索树 有点像是删除二叉搜索树的变形&#xff0c;改变了删除条件而已。 递归法&#xff1a; class Solution:def trimBST(self, root: Optional[TreeNode], low: int, high: int) -> O…...

[音视频] sdl 渲染到外部创建的窗口上

API SDL_CreateWindowFrom # 在外部窗口上创建窗口 其他 api 调用&#xff0c;按照之前的 代码 ui.setupUi(this); sdl_width ui.label->width(); sdl_height ui.label->height(); SDL_Init(SDL_INIT_VIDEO); sdl_win SDL_CreateWindowFrom((void*)ui.label->wi…...

MongoDB之索引

大数据量使用全集合查询&#xff0c;这是非常影响性能的&#xff0c;而索引可以加快查询效率&#xff0c;提高性能&#xff0c;所以这方面的知识也是必不可少的。 查询分析 explain()可以帮助我们分析查询语句性能。 语法 db.collection.find(...).explain()案例及结果 案…...

Redis的介绍

Redis的架构介绍如下: 1. 概述 Redis是一个基于内存的高性能NoSQL键值数据库,支持网络访问和持久化特性。 2. 功能架构 Redis提供字符串、哈希、列表、集合、有序集合、位数组等多种数据结构,支持事务、Lua脚本、发布订阅、流水线等功能。 3. 技术架构 Redis使用单线程的…...

一文了解Docker的用法

一、什么是Docker Docker 是一个开源的应用容器引擎&#xff0c;基于 Go 语言 并遵从 Apache2.0 协议开源。 Docker 可以让开发者打包他们的应用以及依赖包到一个轻量级、可移植的容器中&#xff0c;然后发布到任何流行的 Linux 机器上&#xff0c;也可以实现虚拟化。 容器是…...

netcat的使用

目录 netcat简介 nc的使用场景 nc实现通信 创建一个服务端 创建一个客户端 具体案例 环境 win10在具体路径下执行命令 win7在具体路径下执行命令 netcat文件传输 nc文件传输的利用 服务器等待接收文件 客户端向服务器发送文件 服务器向连接的客户端发送文件 客户…...

深度学习推荐系统(二)Deep Crossing及其在Criteo数据集上的应用

深度学习推荐系统(二)Deep Crossing及其在Criteo数据集上的应用 在2016年&#xff0c; 随着微软的Deep Crossing&#xff0c; 谷歌的Wide&Deep以及FNN、PNN等一大批优秀的深度学习模型被提出&#xff0c; 推荐系统全面进入了深度学习时代&#xff0c; 时至今日&#xff0c…...

前端常用 Vue3 项目组件大全

Vue.js 是一种流行的 JavaScript 前端框架&#xff0c;它简化了构建交互式的用户界面的过程。Vue3 是 Vue.js 的最新版本&#xff0c;引入了许多新的特性和改进。在 Vue3 中&#xff0c;组件是构建应用程序的核心部分&#xff0c;它们可以重用、组合和嵌套。下面是一些前端开发…...

javaee spring 静态代理

静态代理 package com.test.staticProxy;public interface IUsersService {public void insert(); }package com.test.staticProxy;//目标类 public class UsersService implements IUsersService {Overridepublic void insert() {System.out.println("添加用户");…...

Java 包装类和Arrays类(详细解释)

目录 包装类 作用介绍 包装类的特有功能 Arrays类 Arrays.fill() Arrays.toString() Arrays.sort() 升序排序 降序排序 Arrays.equals() Arrays.copyOf() Arrays.binarySearch() 包装类 作用介绍 包装类其实就是8种基本数据类型对应的引用类型。 基本数据类型引用…...

elementUi中的el-table表格的内容根据后端返回的数据用不同的颜色展示

效果图如下&#xff1a; 首先 首先&#xff1a;需要在表格行加入 <template slot-scope"{ row }"> </template>标签 <el-table-column prop"usable" align"center" label"状态" width"180" ><templ…...

在访问一个网页时弹出的浏览器窗口,如何用selenium 网页自动化解决?

相信大家在使用selenium做网页自动化时&#xff0c;会遇到如下这样的一个场景&#xff1a; 在你使用get访问某一个网址时&#xff0c;会在页面中弹出如上图所示的弹出框。 首先想到是利用Alert类来处理它。 然而&#xff0c;很不幸&#xff0c;Alert类处理的结果就是没有结果…...

python 基于http方式与基于redis方式传输摄像头图片数据的实现和对比

目录 0. 需求1. 基于http方式传递图片数据1.1 发送图片数据1.2 接收图片数据并可视化1.3 测试 2. 基于redis方式传递图片数据2.1 发送图片数据2.2 接收图片数据并可视化2.3 测试 3. 对比 0. 需求 在不同进程或者不同语言间传递摄像头图片数据&#xff0c;比如从java实现的代码…...

快速使用Git完整开发

本系列有两篇文章&#xff1a; 一是本篇&#xff0c;主要说明了关于Git工具的基础使用&#xff0c;包含三板斧&#xff08;git add、git commit、git push&#xff09;、Git基本配置、版本回退、分支管理、公钥与私钥、远端仓库和远端分支、忽略文件、命令别名、标签等内容。二…...

鲁棒优化入门(7)—Matlab+Yalmip两阶段鲁棒优化通用编程指南(下)

0.引言 上一篇博客介绍了使用Yalmip工具箱求解单阶段鲁棒优化的方法。这篇文章将和大家一起继续研究如何使用Yalmip工具箱求解两阶段鲁棒优化(默认看到这篇博客时已经有一定的基础了&#xff0c;如果没有可以看看我专栏里的其他文章)。关于两阶段鲁棒优化与列与约束生成算法的原…...

Docker技术--Docker中的网络问题

1.docker中的网络通信 如果想要弄清楚docker中的网络通信问题,其实需要弄清楚这几个问题就可以:容器与容器之间的通信、容器与外部网络之间的通信、外部网络与容器之间的通信。 -a:容器与容器之间的通信,如下所示: 在默认情况下,docker使用网桥(Bridge模式)与NAT通信。这…...

ASP.NET Core 中的两种 Web API

ASP.NET Core 有两种创建 RESTful Web API 的方式&#xff1a; 基于 Controller&#xff0c;使用完整的基于ControllerBase的基类定义接口endpoints。基于 Minimal APIs&#xff0c;使用Lambda表达式定义接口 endpoints。 基于 Controller 的 Web API 可以使用构造函数注入&a…...

【线程池】如何判断线程池中的任务执行完毕(三)

目录 前言 1. isTerminated()方法 2. awaitTermination()方法 3.getTaskCount()方法和executor.getCompletedTaskCount()方法结合使用 4.使用CountDownlatch类 前言 通常我们使用线程池的时候&#xff0c;系统处于运行的状态&#xff0c;而线程池本身就是主要为了线程复用&…...

Qt/C++编写视频监控系统81-Onvif报警抓图和录像并回放

一、前言 视频监控系统中的图文警情模块&#xff0c;是通过Onvif协议的事件订阅拿到的&#xff0c;通过事件订阅后&#xff0c;设备的各种报警事件比如入侵报警/遮挡报警/越界报警/开关量报警等&#xff0c;触发后都会主动往订阅者发送&#xff0c;而且一般都是会发送两次&…...

浅谈安防视频监控平台EasyCVR视频汇聚平台对于夏季可视化智能溺水安全告警平台的重要性

每年夏天都是溺水事故高发的时期&#xff0c;许多未成年人喜欢在有水源的地方嬉戏&#xff0c;这导致了悲剧的发生。常见的溺水事故发生地包括水库、水坑、池塘、河流、溪边和海边等场所。 为了加强溺水风险的提示和预警&#xff0c;完善各类安全防护设施&#xff0c;并及时发现…...

云计算——弹性云计算器(ECS)

弹性云服务器&#xff1a;ECS 概述 云计算重构了ICT系统&#xff0c;云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台&#xff0c;包含如下主要概念。 ECS&#xff08;Elastic Cloud Server&#xff09;&#xff1a;即弹性云服务器&#xff0c;是云计算…...

Neo4j 集群管理:原理、技术与最佳实践深度解析

Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题

在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件&#xff0c;这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下&#xff0c;实现高效测试与快速迭代&#xff1f;这一命题正考验着…...

[免费]微信小程序问卷调查系统(SpringBoot后端+Vue管理端)【论文+源码+SQL脚本】

大家好&#xff0c;我是java1234_小锋老师&#xff0c;看到一个不错的微信小程序问卷调查系统(SpringBoot后端Vue管理端)【论文源码SQL脚本】&#xff0c;分享下哈。 项目视频演示 【免费】微信小程序问卷调查系统(SpringBoot后端Vue管理端) Java毕业设计_哔哩哔哩_bilibili 项…...

Web中间件--tomcat学习

Web中间件–tomcat Java虚拟机详解 什么是JAVA虚拟机 Java虚拟机是一个抽象的计算机&#xff0c;它可以执行Java字节码。Java虚拟机是Java平台的一部分&#xff0c;Java平台由Java语言、Java API和Java虚拟机组成。Java虚拟机的主要作用是将Java字节码转换为机器代码&#x…...

MacOS下Homebrew国内镜像加速指南(2025最新国内镜像加速)

macos brew国内镜像加速方法 brew install 加速formula.jws.json下载慢加速 &#x1f37a; 最新版brew安装慢到怀疑人生&#xff1f;别怕&#xff0c;教你轻松起飞&#xff01; 最近Homebrew更新至最新版&#xff0c;每次执行 brew 命令时都会自动从官方地址 https://formulae.…...

libfmt: 现代C++的格式化工具库介绍与酷炫功能

libfmt: 现代C的格式化工具库介绍与酷炫功能 libfmt 是一个开源的C格式化库&#xff0c;提供了高效、安全的文本格式化功能&#xff0c;是C20中引入的std::format的基础实现。它比传统的printf和iostream更安全、更灵活、性能更好。 基本介绍 主要特点 类型安全&#xff1a…...

Leetcode33( 搜索旋转排序数组)

题目表述 整数数组 nums 按升序排列&#xff0c;数组中的值 互不相同 。 在传递给函数之前&#xff0c;nums 在预先未知的某个下标 k&#xff08;0 < k < nums.length&#xff09;上进行了 旋转&#xff0c;使数组变为 [nums[k], nums[k1], …, nums[n-1], nums[0], nu…...

Java详解LeetCode 热题 100(26):LeetCode 142. 环形链表 II(Linked List Cycle II)详解

文章目录 1. 题目描述1.1 链表节点定义 2. 理解题目2.1 问题可视化2.2 核心挑战 3. 解法一&#xff1a;HashSet 标记访问法3.1 算法思路3.2 Java代码实现3.3 详细执行过程演示3.4 执行结果示例3.5 复杂度分析3.6 优缺点分析 4. 解法二&#xff1a;Floyd 快慢指针法&#xff08;…...

数据库正常,但后端收不到数据原因及解决

从代码和日志来看&#xff0c;后端SQL查询确实返回了数据&#xff0c;但最终user对象却为null。这表明查询结果没有正确映射到User对象上。 在前后端分离&#xff0c;并且ai辅助开发的时候&#xff0c;很容易出现前后端变量名不一致情况&#xff0c;还不报错&#xff0c;只是单…...