YOLOV8模型使用-检测-物体追踪
这个最新的物体检测模型,很厉害的样子,还有物体追踪的功能。
有官方的Python代码,直接上手试试就好,至于理论,有想研究在看论文了╮(╯_╰)╭
简单介绍
YOLOv8 中可用的模型
YOLOv8 模型的每个类别中有五个模型用于检测、分割和分类。YOLOv8 Nano 是最快和最小的,而 YOLOv8 Extra Large (YOLOv8x) 是其中最准确但最慢的。用来实际使用的时候选权重模型。
| YOLOv8n | YOLOv8s | YOLOv8m | YOLOv8l | YOLOv8x |
其他介绍,就不用管了,上手玩一下要紧。看一下几个官方介绍图片就懂了:


这里可以看到,有物体检测识别,检测,分类,轨迹,姿态的功能,下面就上手试试。
部署-简单使用【超简单】
前提安装好Python,版本需要Python>=3.8 我的是 Python 3.11.3
视频图片识别
-
首先,先下载官方的代码。官网代码
-
执行安装与检测:【执行位置是在项目目录下】
pip install -r requirements.txt
pip install ultralytics# 执行这个,会自动下载模型
# Downloading https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt to 'yolov8n.pt'...
# source 替换成需要检测的本地图片即可
yolo predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg'# 也可以如下对视频进行检测
yolo task=detect mode=predict model=yolov8n.pt source=C:\Users\Administrator\Desktop\sssss-1.mp4 show=True#实例分割
yolo task=segment mode=predict model=yolov8n-seg.pt source=C:\Users\Administrator\Desktop\sssss-1.mp4 show=True
-
看看这个检测出来的效果:



-
是不是灰常的简单,[]( ̄▽ ̄)*
-
就酱紫,后面在试试其他功能。
视频流,摄像头识别
这个处理只需要把来源替换成0即可,就像这样
yolo task=detect mode=predict model=yolov8n.pt source=0 show=True
视频追踪-绘制随时间变化的轨迹【这个有意思】
可以用于视频追踪的模型是:YOLOv8n, YOLOv8n-seg and YOLOv8n-pose 【以8n举例子】
yolo track model=yolov8n.pt source=0 show=True
这个追踪的效果就是,在识别里面多了一个ID表示固定的物体。
以下是官方代码改了一下,绘制随时间变化的轨迹
效果是这样的:

这个车流比较多感觉轨迹画的不怎么好看。

哈哈,这个卡车还识别错了 。。╮(╯▽╰)╭
不过这里可以绘制轨迹,就也可以统计这个ID物体在视频中存在的时间什么的。如果放在门店咖啡厅的摄像头里面,就可以看到顾客的停留时间。
这个轨迹变化绘制+物体追踪代码如下:
# 绘制随时间变化的轨迹
from collections import defaultdictimport cv2
import numpy as npfrom ultralytics import YOLO# Load the YOLOv8 model
model = YOLO('yolov8n.pt')# Open the video file
# video_path = "C:\\Users\\Administrator\\Desktop\\1.ts"
video_path = 0
cap = cv2.VideoCapture(video_path)# Store the track history
track_history = defaultdict(lambda: [])# 用于保存图像
# fourcc = cv2.VideoWriter_fourcc(*'mp4v')
# out_cat = cv2.VideoWriter("C:\\Users\\Administrator\\Desktop\\save.mp4", fourcc, 24, (352, 288), True) # 保存位置/格式# Loop through the video frames
while cap.isOpened():# Read a frame from the videosuccess, frame = cap.read()if success:# Run YOLOv8 tracking on the frame, persisting tracks between framesresults = model.track(frame, persist=True)# Get the boxes and track IDsboxes = results[0].boxes.xywh.cpu()if results[0].boxes.id is not None:track_ids = results[0].boxes.id.int().cpu().tolist()# Visualize the results on the frameannotated_frame = results[0].plot()# Plot the tracksif results[0].boxes.id is not None:for box, track_id in zip(boxes, track_ids):x, y, w, h = boxtrack = track_history[track_id]track.append((float(x), float(y))) # x, y center pointif len(track) > 30: # retain 90 tracks for 90 framestrack.pop(0)# Draw the tracking linespoints = np.hstack(track).astype(np.int32).reshape((-1, 1, 2))cv2.polylines(annotated_frame, [points], isClosed=False, color=(track_id*10%255, 100, 255), thickness=2)# Display the annotated framecv2.imshow("YOLOv8 Tracking", annotated_frame)# out_cat.write(annotated_frame) # 保存视频# Break the loop if 'q' is pressedif cv2.waitKey(1) & 0xFF == ord("q"):breakelse:# Break the loop if the end of the video is reachedbreak# Release the video capture object and close the display window
cap.release()
cv2.destroyAllWindows()
参考资料:
- V8官方开源地址:ultralytics :https://github.com/ultralytics/ultralytics
- MMYOLO 开源地址:https://github.com/open-mmlab/mmyolo/tree/dev/configs/yolov8
- https://zhuanlan.zhihu.com/p/633779645?utm_id=0
- https://blog.csdn.net/caobin_cumt/article/details/131009067
- 关键的资料:https://github.com/open-mmlab/mmyolo/blob/dev/configs/yolov8/README.md
相关文章:
YOLOV8模型使用-检测-物体追踪
这个最新的物体检测模型,很厉害的样子,还有物体追踪的功能。 有官方的Python代码,直接上手试试就好,至于理论,有想研究在看论文了╮(╯_╰)╭ 简单介绍 YOLOv8 中可用的模型 YOLOv8 模型的每个类别中有五个模型用于检…...
springmvc:设置后端响应给前端的json数据转换成String格式
设置spring-mvc.xml: xml <?xml version"1.0" encoding"UTF-8"?> <beans xmlns"http://www.springframework.org/schema/beans"xmlns:context"http://www.springframework.org/schema/context"xmlns:xsi"http://www.w…...
Mac安装brew、mysql、redis
mac安装brew mac安装brewmac安装mysql并配置开机启动mac安装redis并配置开机启动 mac安装brew 第一步:执行. /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"第二步:输入开机密码 第三…...
MLC-LLM 部署RWKV World系列模型实战(3B模型Mac M2解码可达26tokens/s)
0x0. 前言 我的 ChatRWKV 学习笔记和使用指南 这篇文章是学习RWKV的第一步,然后学习了一下之后决定自己应该做一些什么。所以就在RWKV社区看到了这个将RWKV World系列模型通过MLC-LLM部署在各种硬件平台的需求,然后我就开始了解MLC-LLM的编译部署流程和…...
Unity 之 参数类型之值类型参数的用法
文章目录 基本数据类型结构体结构体的进一步补充 总结: 当谈论值类型参数时,我们可以从基本数据类型和结构体两个方面详细解释。值类型参数指的是以值的形式传递给函数或方法的数据,而不是引用。 基本数据类型 基本数据类型的值类型参数&…...
VScode远程连接主机
一、前期准备 1、Windows安装VSCode; 2、在VSCode中安装PHP Debug插件; 3、安装好Docker 4、在容器中安装Xdebug ①写一个展现phpinfo的php文件 <?php phpinfo(); ?>②在浏览器上打开该文件 ③复制所有信息丢到Xdebug: Installation instr…...
【iOS】属性关键字
文章目录 前言一、深拷贝与浅拷贝1、OC的拷贝方式有哪些2. OC对象实现的copy和mutableCopy分别为浅拷贝还是深拷贝?3. 自定义对象实现的copy和mutableCopy分别为浅拷贝还是深拷贝?4. 判断当前的深拷贝的类型?(区别是单层深拷贝还是完全深拷贝…...
【计算机基础】Git从安装到使用,详细每一步!扩展Github\Gitlab
📢:如果你也对机器人、人工智能感兴趣,看来我们志同道合✨ 📢:不妨浏览一下我的博客主页【https://blog.csdn.net/weixin_51244852】 📢:文章若有幸对你有帮助,可点赞 👍…...
深入了解Docker镜像操作
Docker是一种流行的容器化平台,它允许开发者将应用程序及其依赖项打包成容器,以便在不同环境中轻松部署和运行。在Docker中,镜像是构建容器的基础,有些家人们可能在服务器上对docker镜像的操作命令不是很熟悉,本文将深…...
嵌入式开发-单片机学习介绍
一、单片机入门篇 单片机的定义和历史 单片机是一种集成了微处理器、存储器、输入输出接口和其他功能于一体的微型计算机,具有高度的集成性和便携性。单片机的历史可以追溯到20世纪70年代,随着微电子技术的不断发展,单片机逐渐成为了工业控…...
5、Spring之Bean生命周期源码解析(销毁)
Bean的销毁过程 Bean销毁是发送在Spring容器关闭过程中的。 在Spring容器关闭时,比如: AnnotationConfigApplicationContext context = new AnnotationConfigApplicationContext(AppConfig.class); UserService userService = (UserService) context.getBean("userSe…...
开发多点触控MFC应用程序
当下计算机变得越来越智能化,越来越无所不能,触摸屏的普及只是时间问题了。 虽然鼠标和键盘不会很快就离开人们的视野,毕竟人们使用鼠标跟键盘已经成为一种习惯,但是处理信息或者说操作计算机的其他方法也层出不穷——比如触控技术…...
使用nlohmann json库进行序列化与反序列化
nlohmann源码仓库:https://github.com/nlohmann/json使用方式:将其nlohmann文件夹加入,包含其头文件json.hpp即可demo #include <iostream> #include "nlohmann/json.hpp" #include <vector>using json nlohmann::js…...
高教社杯数模竞赛特辑论文篇-2012年A题:葡萄酒的评价(附获奖论文)
目录 摘 要 一、问题重述 二、问题分析 2.1 问题一的分析 2.2 问题二的分析...
手写RPC——数据序列化工具protobuf
手写RPC——数据序列化工具protobuf Protocol Buffers(protobuf)是一种用于结构化数据序列化的开源库和协议。下面是 protobuf 的一些优点和缺点: 优点: 高效的序列化和反序列化:protobuf 使用二进制编码,…...
【MATLAB第70期】基于MATLAB的LightGbm(LGBM)梯度增强决策树多输入单输出回归预测及多分类预测模型(全网首发)
【MATLAB第70期】基于MATLAB的LightGbm(LGBM)梯度增强决策树多输入单输出回归预测及多分类预测模型(全网首发) 一、学习资料 (LGBM)是一种基于梯度增强决策树(GBDT)算法。 本次研究三个内容,分别是回归预测,二分类预测和多分类预…...
Linux进程间通信的几种方式
分析&回答 管道(pipe)以及有名管道:管道可用于有亲缘关系进程间通信,有名管道克服了管道没有名字的限制,因此具有管道的所有功能之外,它还允许无亲缘关系进程间通信。信号(Signalÿ…...
Android 13.0 Launcher3定制之双层改单层(去掉抽屉式一)
1.概述 在13.0的系统产品开发中,对于在Launcher3中的抽屉模式也就是双层模式,在系统原生的Launcher3中就是双层抽屉模式的, 但是在通过抽屉上滑的模式拉出app列表页,但是在一些产品开发中,对于单层模式的Launcher3的产品模式也是常用的功能, 所以需要了解抽屉模式,然后修…...
【uniapp 配置启动页面隐私弹窗】
为什么需要配置 原因 根据工业和信息化部关于开展APP侵害用户权益专项整治要求,App提交到应用市场必须满足以下条件: 1.应用启动运行时需弹出隐私政策协议,说明应用采集用户数据 2.应用不能强制要求用户授予权限,即不能“不给权…...
2分钟讲清楚C#的委托, C语言的函数指针,Java的函数式接口
很多小伙伴学习C# 的委托时往往一头雾水, 不明白委托是什么, 有什么作用, 今天我就用2分钟讲清楚 这是一个C# 的控制台程序 定义一个最简单的委托 delegate int Calculate(int a, int b); 这相当于定义了一个Calculate类型, 只不过这个类型需要传入2个int类型的参数 返回值也…...
智慧医疗能源事业线深度画像分析(上)
引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...
【JavaEE】-- HTTP
1. HTTP是什么? HTTP(全称为"超文本传输协议")是一种应用非常广泛的应用层协议,HTTP是基于TCP协议的一种应用层协议。 应用层协议:是计算机网络协议栈中最高层的协议,它定义了运行在不同主机上…...
基于ASP.NET+ SQL Server实现(Web)医院信息管理系统
医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上,开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识,在 vs 2017 平台上,进行 ASP.NET 应用程序和简易网站的开发;初步熟悉开发一…...
HTML 列表、表格、表单
1 列表标签 作用:布局内容排列整齐的区域 列表分类:无序列表、有序列表、定义列表。 例如: 1.1 无序列表 标签:ul 嵌套 li,ul是无序列表,li是列表条目。 注意事项: ul 标签里面只能包裹 li…...
全球首个30米分辨率湿地数据集(2000—2022)
数据简介 今天我们分享的数据是全球30米分辨率湿地数据集,包含8种湿地亚类,该数据以0.5X0.5的瓦片存储,我们整理了所有属于中国的瓦片名称与其对应省份,方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...
【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表
1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...
Element Plus 表单(el-form)中关于正整数输入的校验规则
目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入(联动)2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...
AI,如何重构理解、匹配与决策?
AI 时代,我们如何理解消费? 作者|王彬 封面|Unplash 人们通过信息理解世界。 曾几何时,PC 与移动互联网重塑了人们的购物路径:信息变得唾手可得,商品决策变得高度依赖内容。 但 AI 时代的来…...
招商蛇口 | 执笔CID,启幕低密生活新境
作为中国城市生长的力量,招商蛇口以“美好生活承载者”为使命,深耕全球111座城市,以央企担当匠造时代理想人居。从深圳湾的开拓基因到西安高新CID的战略落子,招商蛇口始终与城市发展同频共振,以建筑诠释对土地与生活的…...
Razor编程中@Html的方法使用大全
文章目录 1. 基础HTML辅助方法1.1 Html.ActionLink()1.2 Html.RouteLink()1.3 Html.Display() / Html.DisplayFor()1.4 Html.Editor() / Html.EditorFor()1.5 Html.Label() / Html.LabelFor()1.6 Html.TextBox() / Html.TextBoxFor() 2. 表单相关辅助方法2.1 Html.BeginForm() …...
