不就是G2O嘛
从零开始一起学习SLAM | 理解图优化,一步步带你看懂g2o代码
SLAM的后端一般分为两种处理方法,一种是以扩展卡尔曼滤波(EKF)为代表的滤波方法,一种是以图优化为代表的非线性优化方法。不过,目前SLAM研究的主流热点几乎都是基于图优化的。
顺便总结下滤波方法的优缺点:
优点:在当时计算资源受限、待估计量比较简单的情况下,EKF为代表的滤波方法比较有效,经常用在激光SLAM中。
缺点:它的一个大缺点就是存储量和状态量是平方增长关系,因为存储的是协方差矩阵,因此不适合大型场景。而现在基于视觉的SLAM方案,路标点(特征点)数据很大,滤波方法根本吃不消,所以此时滤波的方法效率非常低。
在SLAM里,图优化一般分解为两个任务:
1、构建图。机器人位姿作为顶点,位姿间关系作为边。
2、优化图。调整机器人的位姿(顶点)来尽量满足边的约束,使得误差最小。
g2o安装很简单,参考GitHub上官网:
https://github.com/RainerKuemmerle/g2o
1.顶点和边
注意看 has-many 箭头,你看这个超图包含了许多顶点(HyperGraph::Vertex)和边(HyperGraph::Edge)。而这些顶点顶点继承自 Base Vertex,也就是OptimizableGraph::Vertex,而边可以继承自 BaseUnaryEdge(单边), BaseBinaryEdge(双边)或BaseMultiEdge(多边),它们都叫做OptimizableGraph::Edge
2.配置SparseOptimizer的优化算法和求解器
整个图的核心SparseOptimizer 包含一个优化算法(OptimizationAlgorithm)的对象。OptimizationAlgorithm是通过OptimizationWithHessian 来实现的。其中迭代策略可以从Gauss-Newton(高斯牛顿法,简称GN), Levernberg-Marquardt(简称LM法), Powell's dogleg 三者中间选择一个(我们常用的是GN和LM)
3.如何求解
OptimizationWithHessian 内部包含一个求解器(Solver),这个Solver实际是由一个BlockSolver组成的。这个BlockSolver有两个部分,一个是SparseBlockMatrix ,用于计算稀疏的雅可比和Hessian矩阵;一个是线性方程的求解器(LinearSolver),它用于计算迭代过程中最关键的一步HΔx=−b,LinearSolver有几种方法可以选择:PCG, CSparse, Choldmod,具体定义后面会介绍
高博在十四讲中g2o求解曲线参数的例子来说明,源代码地址
https://github.com/gaoxiang12/slambook/edit/master/ch6/g2o_curve_fitting/main.cpp
typedef g2o::BlockSolver< g2o::BlockSolverTraits<3,1> > Block; // 每个误差项优化变量维度为3,误差值维度为1// 第1步:创建一个线性求解器LinearSolver
Block::LinearSolverType* linearSolver = new g2o::LinearSolverDense<Block::PoseMatrixType>(); // 第2步:创建BlockSolver。并用上面定义的线性求解器初始化
Block* solver_ptr = new Block( linearSolver ); // 第3步:创建总求解器solver。并从GN, LM, DogLeg 中选一个,再用上述块求解器BlockSolver初始化
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg( solver_ptr );// 第4步:创建终极大boss 稀疏优化器(SparseOptimizer)
g2o::SparseOptimizer optimizer; // 图模型
optimizer.setAlgorithm( solver ); // 设置求解器
optimizer.setVerbose( true ); // 打开调试输出// 第5步:定义图的顶点和边。并添加到SparseOptimizer中
CurveFittingVertex* v = new CurveFittingVertex(); //往图中增加顶点
v->setEstimate( Eigen::Vector3d(0,0,0) );
v->setId(0);
optimizer.addVertex( v );
for ( int i=0; i<N; i++ ) // 往图中增加边
{CurveFittingEdge* edge = new CurveFittingEdge( x_data[i] );edge->setId(i);edge->setVertex( 0, v ); // 设置连接的顶点edge->setMeasurement( y_data[i] ); // 观测数值edge->setInformation( Eigen::Matrix<double,1,1>::Identity()*1/(w_sigma*w_sigma) ); // 信息矩阵:协方差矩阵之逆optimizer.addEdge( edge );//设置迭代次数
}// 第6步:设置优化参数,开始执行优化
optimizer.initializeOptimization();
optimizer.optimize(100);
1.线性求解器
LinearSolverCholmod :使用sparse cholesky分解法。继承自LinearSolverCCS
LinearSolverCSparse:使用CSparse法。继承自LinearSolverCCS
LinearSolverPCG :使用preconditioned conjugate gradient 法,继承自LinearSolver
LinearSolverDense :使用dense cholesky分解法。继承自LinearSolver
LinearSolverEigen: 依赖项只有eigen,使用eigen中sparse Cholesky 求解,因此编译好后可以方便的在其他地方使用,性能和CSparse差不多。继承自LinearSolver
2.创建BlockSolver。并用上面定义的线性求解器初始化。
BlockSolver 内部包含 LinearSolver,用上面我们定义的线性求解器LinearSolver来初始化。
你点进去会发现 BlockSolver有两种定义方式,一种是指定的固定变量的solver,我们来看一下定义
using BlockSolverPL = BlockSolver< BlockSolverTraits<p, l> >;
其中p代表pose的维度(注意一定是流形manifold下的最小表示),l表示landmark的维度
另一种是可变尺寸的solver,定义如下
using BlockSolverX = BlockSolverPL<Eigen::Dynamic, Eigen::Dynamic>;
这是因为在某些应用场景,我们的Pose和Landmark在程序开始时并不能确定,那么此时这个块状求解器就没办法固定变量,此时使用这个可变尺寸的solver,所有的参数都在中间过程中被确定另外你看block_solver.h的最后,预定义了比较常用的几种类型,如下所示:
BlockSolver_6_3 :表示pose 是6维,观测点是3维。用于3D SLAM中的BA
BlockSolver_7_3:在BlockSolver_6_3 的基础上多了一个scale
BlockSolver_3_2:表示pose 是3维,观测点是2维
3.创建总求解器solver。并从GN, LM, DogLeg 中选一个,再用上述块求解器BlockSolver初始化
你点进去 GN、 LM、 Doglet算法内部,会发现他们都继承自同一个类OptimizationWithHessian,如下图所示,这也和我们最前面那个图是相符的。然后,我们点进去看 OptimizationAlgorithmWithHessian,发现它又继承自OptimizationAlgorithm,这也和前面的相符,总之,在该阶段,我们可以选则三种方法:
g2o::OptimizationAlgorithmGaussNewton
g2o::OptimizationAlgorithmLevenberg
g2o::OptimizationAlgorithmDogleg
4.创建终极大boss 稀疏优化器(SparseOptimizer),并用已定义求解器作为求解方法。
创建稀疏优化器
g2o::SparseOptimizer optimizer;
用前面定义好的求解器作为求解方法:
SparseOptimizer::setAlgorithm(OptimizationAlgorithm* algorithm)
其中setVerbose是设置优化过程输出信息用的
SparseOptimizer::setVerbose(bool verbose)
5.定义图的顶点和边。并添加到SparseOptimizer中。
6.设置优化参数,开始执行优化。
设置SparseOptimizer的初始化、迭代次数、保存结果等。
SparseOptimizer::initializeOptimization(HyperGraph::EdgeSet& eset)
设置迭代次数,然后就开始执行图优化了。
SparseOptimizer::optimize(int iterations, bool online)
https://www.jianshu.com/p/e16ffb5b265d
https://blog.csdn.net/heyijia0327/article/details/47686523
相关文章:
不就是G2O嘛
从零开始一起学习SLAM | 理解图优化,一步步带你看懂g2o代码 SLAM的后端一般分为两种处理方法,一种是以扩展卡尔曼滤波(EKF)为代表的滤波方法,一种是以图优化为代表的非线性优化方法。不过,目前SLAM研究的主…...
C#开发的OpenRA游戏之系统参数选项按钮
C#开发的OpenRA游戏之系统参数选项按钮 前面分析了信标按钮,从图上可以看到,靠右边的按钮,就是系统参数选项按钮: 这个按钮与前面三个按钮是不一样的,虽然它们在排列位置上是放在一起,但是处理的方法方式是不一样的,因为这个选项按钮,并不需要发命令给服务器,再返回来…...
苹果启动2024年SRDP计划:邀请安全专家使用定制iPhone寻找漏洞
苹果公司昨天(8月30日)正式宣布开始接受2024 年iPhone安全研究设备计划的申请,iOS 安全研究人员可以在 10 月底之前申请安全研究设备 SRD。 SRD设备是专门向安全研究人员提供的iPhone14Pro,该设备具有专为安全研究而设计的特殊硬…...
std::make_shared和new初始化智能指针的区别
先看代码: class Base {public:Base(int num):a(num) {std::cout << "Base() construct" << std::endl;}~Base() {std::cout << "Base() deconstruct" << std::endl;}int Get() {return a;}private:int a; };void tes…...
无涯教程-JavaScript - ERFC.PRECISE函数
描述 ERFC.PRECISE函数返回x和无穷大之间集成的互补ERF函数。 互补误差函数等于1-ERF(即1-误差函数),由等式给出- $$Erfc(x) \frac {2} {\sqrt {\pi}} \int_ {x} ^ {\infty} e ^ {-t ^ 2} dt $$ 语法 ERFC.PRECISE(x)争论 Argument描述Required/OptionalxThe lower bound…...
2023国赛数学建模C题思路分析 - 蔬菜类商品的自动定价与补货决策
# 1 赛题 在生鲜商超中,一般蔬菜类商品的保鲜期都比较短,且品相随销售时间的增加而变差, 大部分品种如当日未售出,隔日就无法再售。因此, 商超通常会根据各商品的历史销售和需 求情况每天进行补货。 由于商超销售的蔬菜…...
手写Spring:第1章-开篇介绍,手写Spring
文章目录 一、手写Spring二、Spring 生命周期 一、手写Spring 💡 目标:我们该对 Spring 学到什么程度?又该怎么学习呢? 手写简化版 Spring 框架,了解 Spring 核心原理,为后续再深入学习 Spring 打下基础。在…...
C语言中,字节对齐是一种重要的内存管理概念
C语言中,字节对齐是一种重要的内存管理概念 字节对齐的目的是为了提高内存访问的效率。因为CPU访问内存的最小单位是字节,所以如果数据结构的成员以正确的字节边界对齐,那么CPU就可以直接访问这些成员,而不需要进行额外的内存移动…...
网络丢包问题,敢不敢这样定位?
下午好,我的网工朋友。 所谓丢包,是指在网络数据的收发过程中,由于种种原因,数据包还没传输到应用程序中,就被丢弃了。 这些被丢弃包的数量,除以总的传输包数,也就是我们常说的丢包率。 丢包…...
【漏洞复现】H3C路由器信息泄露任意用户登录
漏洞描述 通过访问特地址得到密码可进行登录。 免责声明 技术文章仅供参考,任何个人和组织使用网络应当遵守宪法法律,遵守公共秩序,尊重社会公德,不得利用网络从事危害国家安全、荣誉和利益,未经授权请勿利用文章中…...
随机数算法,SQL
SELECT* FROMprizes_config WHEREweight > ( SELECT FLOOR( RAND() * MAX( weight )) FROM prizes_config ) order by weight asc-- LIMIT 1;记录 id 权重 1 5 2 10 3 50 4 100 找权重最大的那个值,调用rand()函数&#…...
什么是软件测试+软件测试的分类【软件测试】
软件测试 什么是软件? 软件 程序 数据 文档 软件测试的对象有哪些?程序 数据 文档 C/S与B/S架构 C/S:客户端服务器,这种就是我们一定要安装一个客户端才能够用的软件,就叫C/S。比如:微信、qq B/S&am…...
2023国赛C题解题思路:蔬菜类商品的自动定价与补货决策
本次将全程提供国赛C题完整解题思路及代码,同时共享一些国赛论文模板等资料,需要的小伙伴可以关注一下,持续更新!大家也可以关注B站视频:不知名数学家小P 实时更新 本次C题是一道较为简单的统计分析题目,建…...
MIT6.824 Spring2021 Lab 1: MapReduce
文章目录 0x00 准备0x01 MapReduce简介0x02 RPC0x03 调试0x04 代码coordinator.gorpc.goworker.go 0x00 准备 阅读MapReduce论文配置GO环境 因为之前没用过GO,所以 先在网上学了一下语法A Tour of Go 感觉Go的接口和方法的语法和C挺不一样, 并发编程也挺有意思 0x01 MapRed…...
JavaScript 日期 – 如何使用 DayJS 库在 JS 中处理日期和时间
当涉及到在 JavaScript 中处理日期和时间时,开发人员经常发现自己正在努力应对内置对象的复杂性Date。 虽然普通 JavaScript 提供了基本功能,但使用起来可能相当麻烦,尤其是在处理解析、格式化和操作日期时。 这就是像 DayJS 这样的外部库发挥作用的地方,它提供了大量的优…...
Docker基础入门:Docker基础总结篇--超详细
Docker基础入门:Docker基础总结篇[docker3要素、docker安装配置、容器使用、镜像管理发布] 一、Docker 3要素1.1、镜像(Image)1.2、容器(Container)1.3、仓库(Registry)1.4 、总结 二、Docker安…...
对象临时中间状态的条件竞争覆盖
Portswigger练兵场之条件竞争 🦄条件竞争之对象临时中间状态的条件竞争 Lab: Partial construction race conditions🚀实验前置必要知识点 某些框架尝试通过使用某种形式的请求锁定来防止意外的数据损坏。例如,PHP 的本机会话处理程序模块…...
Nodejs 第十四章(process)
process 是Nodejs操作当前进程和控制当前进程的API,并且是挂载到globalThis下面的全局API API 介绍 1. process.arch 返回操作系统 CPU 架构 跟我们之前讲的os.arch 一样 arm、arm64、ia32、mips、mipsel、ppc、ppc64、s390、s390x、以及 x64 2. process.cwd() …...
数据分析因子评分学习
当多个因素影响一个结果时,我们需要综合考虑这些因素分别对结果德影响。因子评分就是用于比较其对结果德影响程度。 文章目录 前言一、案例背景二、解决方案(一)分析思路(二)剔除无关数据(三)求…...
【postgresql 基础入门】数据库服务的管理
数据库服务管理 专栏内容: postgresql内核源码分析手写数据库toadb并发编程 开源贡献: toadb开源库 个人主页:我的主页 管理社区:开源数据库 座右铭:天行健,君子以自强不息;地势坤ÿ…...
githubPage部署Vue项目
github中新建项目 my-web (编写vue项目代码) myWebOnline(存放Vue打包后的dist包里面的文件) 发布流程 (假设my-web项目已经编写完成)Vue-cli my-web vue.config.js文件中 const { defineConfig } require(vue/cli-service)…...
【网络编程】网络原来这么简单(更新中)
故事背景:有一天小胖和他的朋友细狗出去吃饭,聊着聊着就聊到了网络,小胖是学校里的编程大佬,而细狗只是个空有求知欲的编程小白。 细狗:胖儿啊,你说计算机是怎么通信的我感觉好抽象啊。为啥别人给我发个消息…...
监控系统典型架构
监控系统典型架构如下: 从左往右看: 采集器是负责采集监控数据的,采集到数据之后传输给服务端,通常是直接写入时序库。 对时序库的数据进行分析和可视化。 告警引擎产生告警事件之后交给告警发送模块做不同媒介的通知。 可视化比…...
jsp 新能源汽车论坛网Myeclipse开发mysql数据库web结构java编程计算机网页项目
一、源码特点 JSP 新能源汽车论坛网是一套完善的java web信息管理系统,对理解JSP java编程开发语言有帮助,系统具有完整的源代码和数据库,系统主要采用B/S模式开发。开发环境为 TOMCAT7.0,Myeclipse8.5开发,数据库为Mysql5.0…...
Code Snippet的使用
文章目录 前言Code Snippet:就是咱们在VS中敲的prop、propfull、ctol【构造器快捷键】、for等快捷键,然后按tab键自动生成代码1.VS自带的:prop、propfull、ctol【构造器快捷键】、for等快捷键,直接使用2.自定义Snippet: 巨人的肩膀…...
华为云云服务器评测|华为云耀云L搭建zerotier服务测试
0. 环境 - Win10 - 云耀云L服务器 1. 安装docker 检查yum源,本EulerOS的源在这里: cd /etc/yum.repos.d 更新源 yum makecache 安装 yum install -y docker-engine 运行测试 docker run hello-world 2. 运行docker镜像 默认配…...
企业电脑文件加密系统 / 防泄密软件——「天锐绿盾」
「天锐绿盾」是一种公司文件加密系统,旨在保护公司内网数据安全,防止信息泄露。该系统由硬件和软件组成,其中包括服务端程序、控制台程序和终端程序。 PC访问地址: isite.baidu.com/site/wjz012xr/2eae091d-1b97-4276-90bc-6757c…...
单条视频涨粉50w,逃出大英博物馆背后的逻辑是什么?
为洞察小红书平台的内容创作趋势及品牌营销策略,新红推出8月月度榜单,从创作者、品牌、品类多方面入手,解析月榜数据,为从业者提供参考。 一条视频涨粉50w 情感共鸣是爆火的核心 据8月的『涨粉排行榜』TOP500数据显示,…...
AIGC(生成式AI)试用 1 -- 基本文本查询
以一个字起,依次加一个字构成新句,不断加字使句子越来越长,也许越来越有趣。 1. 使用不同的生成AI提问,提取结果(全部 或 第一句),对比结果,个人评价更喜欢哪个(绿色底色…...
php如何处理高并发请求
PHP 处理高并发请求的方法: 使用异步框架:通过使用异步处理方式,可以有效地降低 PHP 处理请求的响应时间,避免因为 IO 操作而导致的等待阻塞。常用的异步框架有ReactPHP和Swoole等。 使用缓存:使用缓存可以减少每个请求…...
php网站开发优势/合肥网络公司seo
.net 调用webservice 总结最近做一个项目,由于是在别人框架里开发app,导致了很多限制,其中一个就是不能直接引用webservice 。我们都知道,调用webserivice 最简单的方法就是在 "引用" 那里点击右键,然后选择"引用…...
网站建设业务员招聘/域名检测查询
概述当我们没有足够的数据时,图像增强是一个非常有效的方法我们可以在任何场合使用图像增强进行深度学习——黑客竞赛、工业项目等等我们还将使用PyTorch建立一个图像分类模型,以了解图像增强是如何形成图片的介绍在深度学习黑客竞赛中表现出色的技巧(或…...
网站建设硬件预算/济南今日头条最新消息
近年来,华为在数字政府、智慧城市领域积极躬身入局。2020年以来,深圳龙岗、安徽六安、江苏盐城、内蒙古乌兰察布等地,纷纷与华为携手共建智慧政务。日前,国际数据公司IDC发布《中国政务云基础架构市场厂商评估MarketScape报告》。…...
wordpress投票插件/西安网络科技公司排名
键盘脏一些也未必全无好处,可以借机研究一下按键频度。键盘特写,哪个键用的多,哪个键按的少,一目了然。 A到Z二十六个字母键,上下左右光标键,全部光秃秃的,可见使用频率很高;周边的回…...
手机百度怎么解除禁止访问网站/百度排名点击软件
1、ubuntu adsl设置 sudo pppoeconf 2、解决有线无法边接 dashhome/system setting/network。显示Wired Unmanaged 解决方法:sudo vim /etc/NetworkManager/NetworkManager.conf将managedfalse改成managedtrue然后重启network-managersudo service network-manag…...
网站推广入口/南宁百度seo推广
实例 1、取得 MYSQL 的版本取得 MYSQL 的版本实例 2、创建一个表并且插入数据创建一个表并且插入数据实例 3、 python 使用 slect 获取 mysql 的数据并遍历使用 slect 获取 mysql 的数据并遍历上面的代码,用来将所有的结果取出,不过打印的时候是每行一个…...