当前位置: 首页 > news >正文

绍兴做网站/青岛seo服务哪家好

绍兴做网站,青岛seo服务哪家好,java做网站怎么验证登录,福建工程建设网站目录 一、引言 二、句法与语法:定义和重要性 什么是句法? 例子 什么是语法? 例子 句法与语法的重要性 句法的重要性 语法的重要性 三、句法理论:历史与分类 生成语法(Generative Grammar) 背景…

目录

一、引言

二、句法与语法:定义和重要性

什么是句法?

例子

什么是语法?

例子

句法与语法的重要性

句法的重要性

语法的重要性

三、句法理论:历史与分类

生成语法(Generative Grammar)

背景

例子

依存语法(Dependency Grammar)

背景

例子

构式语法(Construction Grammar)

背景

例子

Categorial Grammar(范畴语法)

背景

例子

四、短语和句法范畴

短语(Phrase)

名词短语(Noun Phrase, NP)

定义

例子

动词短语(Verb Phrase, VP)

定义

例子

句法范畴(Syntactic Categories)

基本范畴(Atomic Categories)

定义

例子

复合范畴(Complex Categories)

定义

例子

五、短语结构规则与依存结构

短语结构规则(Phrase Structure Rules)

句子(S)的生成

定义

例子

动词短语的复杂性

定义

例子

依存结构(Dependency Structure)

核心与依赖元素

定义

例子

六、句法分析方法

自顶向下(Top-Down)分析

定义

例子

自底向上(Bottom-Up)分析

定义

例子

耳朵算法(Earley Algorithm)

定义

例子

基于统计的句法分析(Probabilistic Parsing)

定义

例子

转换基础的分析(Transition-Based Parsing)

定义

例子

PyTorch实战演示

自顶向下(Top-Down)分析

示例代码

输入和输出

自底向上(Bottom-Up)分析

示例代码

输入和输出

七、总结


关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理专业人士,上亿营收AI产品研发负责人。

本文全面探讨了自然语言处理(NLP)中句法分析的理论与实践。从句法和语法的定义,到各类句法理论和方法,文章细致入微地解析了句法分析的多个维度。最后,通过PyTorch的实战演示,我们展示了如何将这些理论应用到具体任务中。本文旨在为读者提供一份全面、深入且实用的句法分析指南。

file

一、引言

句法分析(Syntactic Parsing)是自然语言处理(NLP)中一个关键且不可或缺的任务。如果我们把自然语言看作一个庞大的建筑,那么句法分析就好比这座建筑的蓝图。正是因为有了这份蓝图,人们才能理解语言的结构,从而更准确地进行语义分析、情感分析或者机器翻译等高级任务。

句法分析不仅在学术研究中占有重要地位,也在商业应用、搜索引擎、机器人对话系统等多个领域中发挥着关键作用。例如,高级搜索算法会使用句法分析来更准确地理解查询语句,从而返回更为相关的搜索结果。

尽管句法分析的重要性众所周知,但其实现方式及应用却并不是一蹴而就的。它需要数学模型、算法、甚至对人类语言的深入理解。本文将对句法分析的理论基础进行全面而深入的介绍,并借助PyTorch框架进行实战演示。

我们将从句法与语法的定义出发,探讨其历史背景和理论分类,介绍成分和依存两大主流的句法分析方法,并最终提供PyTorch的实战代码演示。希望这篇文章能为您在理论学习和实践应用方面提供有力的支持。

file


二、句法与语法:定义和重要性

什么是句法?

句法(Syntax)关注的是语言结构和规则的研究,即词、短语、句子如何组合成有意义的表达方式。简单来说,句法就像是一个建造句子的“配方”,告诉我们如何将词汇(ingredients)合成为完整、有意义的句子(dish)。

例子

考虑一个简单的句子:“The cat sat on the mat。”(猫坐在垫子上。)在这个句子中,我们可以很清晰地看到主语(The cat)、谓语(sat)、宾语(on the mat)如何通过句法规则被组合成一个完整的句子。

什么是语法?

与句法不同,语法(Grammar)是一个更为宽泛的术语,它包括了句法、音位学(Phonology)、语义(Semantics)等多个方面。语法规定了语言如何正确、有效地使用,包括但不限于词汇的选择、词序、时态等。

例子

再次考虑刚才的句子:“The cat sat on the mat。”如果我们改变词序,如:“The mat sat on the cat”,意义就完全不同了。这就是语法的作用,确保句子不仅结构正确,而且意义明确。

句法与语法的重要性

句法和语法是语言理解和生成中不可或缺的组成部分。它们为高级NLP任务,如机器翻译、文本摘要、情感分析等提供了坚实的基础。

句法的重要性

  1. 可解释性:句法结构能帮助我们更好地理解句子的含义。
  2. 多样性:句法规则使语言更加丰富和多样,增加了表达能力。
  3. 自然语言处理应用:句法分析是信息检索、机器翻译、语音识别等多种NLP任务的基础。

语法的重要性

  1. 正确性:语法规则确保语言的标准和正确性。
  2. 复杂性和深度:良好的语法结构能表达更复杂、更深刻的观点和信息。
  3. 跨文化交流:了解语法规则有助于更准确地进行跨语言、跨文化的交流。

三、句法理论:历史与分类

句法研究历史悠久,不同的句法理论对我们如何理解和分析语言结构有着不同的影响。在这一部分,我们将深入探讨句法理论的历史背景和不同分类。

生成语法(Generative Grammar)

背景

生成语法是由诺姆·乔姆斯基(Noam Chomsky)于1950年代提出的,目的是通过一组有限的规则来生成(即产生)所有可能的合法句子。

例子

在生成语法中,一个句子如“John eats an apple”可以被视为从更高层次的“S”(句子)符号生成的,其中“S”可以被分解为主语(NP,名词短语)和谓语(VP,动词短语)。

file

依存语法(Dependency Grammar)

背景

依存语法的核心思想是语言中的词相互依赖来传达意义。这一理论强调了单词之间的关系,而不仅仅是它们在句子中的位置。

例子

在句子“John eats an apple”中,“eats”依赖于“John”作为其执行者,而“an apple”则是“eats”的宾语。这些依赖关系帮助我们理解句子的结构和意义。

file

构式语法(Construction Grammar)

背景

构式语法关注的是特定语境下词汇或短语如何组合成更大的结构。这一理论强调了语言使用的动态性和灵活性。

例子

考虑短语“kick the bucket”,虽然字面意义是“踢桶”,但在特定文化和语境下,这个短语实际上意味着“去世”。构式语法能够解释这种特定语境下的语义复杂性。

Categorial Grammar(范畴语法)

背景

范畴语法是一种逻辑主导的语法体系,它使用数学逻辑来描述词汇项如何组合成更复杂的表达式。

例子

在范畴语法中,动词如“run”可以被视为一个从主语(名词)到谓语(动词)的函数。这一点用逻辑符号可以清晰地表示。


四、短语和句法范畴

理解短语和句法范畴是进行句法分析的关键步骤之一。在这一部分,我们将详细介绍这两个概念,以及它们在句法分析中的重要性。

短语(Phrase)

短语是一组单词,它们在句子中作为一个单元出现,并且通常具有特定的语法和语义功能。

名词短语(Noun Phrase, NP)

定义

名词短语通常由一个或多个名词以及与之相关的修饰词(如形容词或定语)组成。

例子

  • “The quick brown fox”(快速的棕色狐狸)是一个名词短语,其中“quick”和“brown”是修饰“fox”的形容词。

动词短语(Verb Phrase, VP)

定义

动词短语包含一个主动词以及可能出现的一系列宾语或补语。

例子

  • 在句子“John is eating an apple”中,“is eating an apple”是一个动词短语。

句法范畴(Syntactic Categories)

句法范畴是对单词或短语在句子中功能的抽象表示。常见的句法范畴包括名词(N)、动词(V)、形容词(Adj)等。

基本范畴(Atomic Categories)

定义

这些是最基本的句法范畴,通常包括名词(N)、动词(V)、形容词(Adj)等。

例子

  • “Dog”(狗)是一个名词。
  • “Run”(跑)是一个动词。
  • “Happy”(快乐的)是一个形容词。

复合范畴(Complex Categories)

定义

复合范畴由两个或多个基本范畴通过特定的句法规则组合而成。

例子

  • 名词短语(NP)是一个复合范畴,可能由名词(N)和形容词(Adj)组成,如“happy dog”。

五、短语结构规则与依存结构

理解句子的结构和组成通常涉及短语结构规则和依存结构两个主要方面。下面,我们将逐一介绍这两个概念。

短语结构规则(Phrase Structure Rules)

短语结构规则是一组规则,用于描述如何从单个单词生成句子或短语的结构。

句子(S)的生成

定义

一个常见的短语结构规则是将名词短语(NP)和动词短语(VP)组合以形成句子(S)。

例子

  • 句子(S) = 名词短语(NP) + 动词短语(VP)
    • "The cat" (NP) + "sat on the mat" (VP) = "The cat sat on the mat" (S)

动词短语的复杂性

定义

动词短语(VP)自身也可能包括其他名词短语(NP)或副词(Adv)作为其组成部分。

例子

  • 动词短语(VP) = 动词(V) + 名词短语(NP)+ 副词(Adv)
    • "eats" (V) + "an apple" (NP) + "quickly" (Adv) = "eats an apple quickly" (VP)

依存结构(Dependency Structure)

依存结构关注单词之间的依存关系,而不是它们如何组合成短语或句子。

核心与依赖元素

定义

在依存结构中,每个单词都有一个“头”(head),以及与这个头有依存关系的一系列“依赖”(dependents)。

例子

  • 在句子"The quick brown fox jumps over the lazy dog"中,"jumps" 是动词,作为“头”元素。
    • "The quick brown fox" 是这个动词的主语,因此是依赖元素。
    • "over the lazy dog" 是这个动词的宾语,也是依赖元素。

两种结构都有各自的优点和应用场景。短语结构规则通常更容易与形式文法相匹配,便于生成句子。依存结构则强调单词之间的关系,更便于理解句子的语义。


六、句法分析方法

句法分析是NLP中一项至关重要的任务,用于解析句子结构,以便更好地理解句子的意义和组成。本节将介绍几种主流的句法分析方法。

自顶向下(Top-Down)分析

file

定义

从句子的最高层次(通常是句子(S)本身)开始,逐步将其分解为更小的组成部分(如名词短语、动词短语等)。

例子

在句子 "The cat sat on the mat" 中,自顶向下分析首先识别出整个句子,然后将其分解为名词短语 "The cat" 和动词短语 "sat on the mat"。

自底向上(Bottom-Up)分析

定义

从句子的单词开始,逐步合并它们以形成更高层次的短语或结构。

例子

对于同样的句子 "The cat sat on the mat",自底向上分析会先识别 "The", "cat", "sat", "on", "the", "mat" 这些单词,然后将它们组合成名词短语和动词短语,最终形成整个句子。

耳朵算法(Earley Algorithm)

定义

一种更高效的句法分析方法,适用于更复杂的文法系统。

例子

如果一个句子有多重可能的解析方式(即存在歧义),耳朵算法可以有效地识别出所有可能的解析结构,而不是仅找到其中一个。

基于统计的句法分析(Probabilistic Parsing)

定义

利用机器学习或统计方法来预测最可能的句子结构。

例子

在面对歧义句子时,基于统计的方法可以使用预先训练好的模型来预测最可能的句子结构,而不仅仅是依赖规则。

转换基础的分析(Transition-Based Parsing)

定义

通过一系列操作(如推入、弹出、左移、右移等)来逐步构建句子的依存关系。

例子

在处理 "She eats an apple" 这个句子时,转换基础的分析会从 "She" 开始,通过一系列的操作,逐步添加 "eats" 和 "an apple",并建立它们之间的依存关系。


PyTorch实战演示

在这一节中,我们将使用PyTorch来实现上述几种句法分析方法。以下代码段是使用Python和PyTorch编写的,并注释详尽,以便理解。

自顶向下(Top-Down)分析

示例代码

下面的代码展示了如何用PyTorch实现一个简单的自顶向下句法分析模型。

import torch
import torch.nn as nn# 定义模型
class TopDownParser(nn.Module):def __init__(self, vocab_size, hidden_size):super(TopDownParser, self).__init__()self.embedding = nn.Embedding(vocab_size, hidden_size)self.rnn = nn.LSTM(hidden_size, hidden_size)self.classifier = nn.Linear(hidden_size, 3)  # 假设有3种不同的短语类型:NP, VP, PPdef forward(self, x):x = self.embedding(x)x, _ = self.rnn(x)x = self.classifier(x)return x# 示例输入:5个词的句子(用整数表示)
input_sentence = torch.tensor([1, 2, 3, 4, 5])# 初始化模型
model = TopDownParser(vocab_size=10, hidden_size=16)
output = model(input_sentence)print("输出:", output)

输入和输出

  • 输入:一个用整数表示的句子(每个整数是词汇表中一个词的索引)。
  • 输出:句子中每个词可能属于的短语类型(如名词短语、动词短语等)。

自底向上(Bottom-Up)分析

示例代码

# 同样使用上面定义的 TopDownParser 类,但训练和应用方式不同# 示例输入:5个词的句子(用整数表示)
input_sentence = torch.tensor([6, 7, 8, 9, 10])# 使用相同的模型
output = model(input_sentence)print("输出:", output)

输入和输出

  • 输入:一个用整数表示的句子。
  • 输出:句子中每个词可能属于的短语类型。

这只是一个简单的实现示例,实际应用中可能需要更多的细节和优化。

七、总结

句法分析作为自然语言处理(NLP)的关键组成部分,扮演着理解和解析人类语言结构的重要角色。从历史背景到理论分类,再到短语与依存结构的理解,我们逐一探究了句法分析的多个维度。实际操作层面,PyTorch的应用进一步揭示了如何在现实任务中实施这些理论。通过整合理论和实践,我们不仅能更深刻地理解语言结构,也能更有效地处理各种NLP问题。这种跨学科的融合为未来更多创新性应用和研究提供了坚实的基础。

关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理专业人士,上亿营收AI产品研发负责人。

相关文章:

一文概览NLP句法分析:从理论到PyTorch实战解读

目录 一、引言 二、句法与语法:定义和重要性 什么是句法? 例子 什么是语法? 例子 句法与语法的重要性 句法的重要性 语法的重要性 三、句法理论:历史与分类 生成语法(Generative Grammar) 背景…...

NPM 常用命令(三)

目录 1、npm compltion 1.1 描述 2、npm config 2.1 常用命令 2.2 描述 set get list delete edit fix 2.3 配置 json global editor location long 3、npm dedupe 3.1 描述 3.2 配置 4、npm deprecate 4.1 命令使用 4.2 描述 4.3 配置 registry ot…...

UWB学习——day1

UWB定义 UWB:Ultra Wideband(超宽频) UWB所谓的超宽频区别于其它近场通信技术可总结为时域上跳跃,频域上矮胖 从图中可以看出,时域上通过短且强的脉冲信号,频域上主要是超宽的频谱(Spectrum&a…...

2023国赛数学建模C题模型代码

C题代码全部都完成了,可以看文末名片 我们先看C题的一个背景 在生鲜商超中,蔬菜类商品保鲜期短,且品相会随销售时间增加而变差。商超需要根据历史销售和需求每天进行补货。由于蔬菜品种众多、产地不同,补货时间在凌晨,商家须在不明确具体单品和价格的情况下进行补…...

2023年高教社杯数学建模国赛C题详细版思路

C 题 蔬菜类商品的自动定价与补货决策 2023年国赛如期而至,为了方便大家尽快确定选题,这里将对C题进行解题思路说明,以分析C题的主要难点、出题思路以及选择之后可能遇到的难点进行说明,方便大家尽快找到C题的解题思路。 难度排…...

互联网摸鱼日报(2023-09-07)

互联网摸鱼日报(2023-09-07) 36氪新闻 慕尼黑车展纪实:德系车略显“紧张” 隆基全力押注BC,光伏又要变天了? 苹果Vision Pro也逃不过Windows XP系统 官宣造车两年后,小米仍在等待重估 抖音苹果店开业,卖iPhone抢热…...

并行处理系统

并行处理系统概述 并行处理的主要技术问题: 互连:如何实现将多个计算模块和多个存储模块进行互连,并通过控制这些模块的并行工作来提高处理速度数据一致性:为加快数据处理的速度,通常利用程序访问的局部性特性&#x…...

2023国赛数学建模A题思路分析 - 定日镜场的优化设计

# 1 赛题 A 题 定日镜场的优化设计 构建以新能源为主体的新型电力系统, 是我国实现“碳达峰”“碳中和”目标的一项重要 措施。塔式太阳能光热发电是一种低碳环保的新型清洁能源技术[1]。 定日镜是塔式太阳能光热发电站(以下简称塔式电站)收集太阳能的基本组件&…...

git企业级使用

1.初始Git 1.1创建Git仓库 要提前说的是,仓库是进⾏版本控制的⼀个⽂件⽬录。我们要想对⽂件进⾏版本控制,就必须先创建⼀个仓库出来。创建⼀个Git本地仓库对应的命令为 git init ,注意命令要在⽂件⽬录下执⾏,例如:…...

[docker]笔记-存储管理

1、docker数据存储分为非永久性存储和永久性存储。 非永久性存储:容器创建会默认创建非永久性存储,该存储从属于容器,生命周期与容器相同,会随着容器的关闭而消失(可理解为内存中数据,会随关机而消失&…...

记录获取蓝鲸智云token的过程

一、使用python脚本获取蓝鲸智云token python版本环境:3.11 # -*- coding: utf-8 -*- import requestsdef get_user_token(domain,user,password):模拟用户登录,并返回 bk_token 和 bk_csrftokenBK_PAAS_HOST domainUSERNAME userPASSWORD password…...

C语言AES加密解密字符串与16进制数据

文章目录 AES介绍C语言加密库加密解密16进制数据加密解密字符串数据base64编码aes加密字符串aes解密字符串解密中文字符加密库源代码AES介绍 密码学中的高级加密标准(Advanced Encryption Standard,AES),又称Rijndael加密法,是美国联邦政府采用的一种区块加密标准。这个标…...

NIFI实现JSON转SQL并插入到数据库表中

说明 本文中的NIFI是使用docker进行安装的,所有的配置参考:docker安装Apache NIFI 需求背景 现在有一个文件,里面存储的是一些json格式的数据,要求将文件中的数据存入数据库表中,以下是一些模拟的数据和对应的数据库…...

【canal系】canal集群异常Could not find first log file name in binary log index file

这里先说明下这边使用的canal版本号为1.1.5 在描述这个问题之前,首先需要简单对于canal架构有个基本的了解 canal工作原理 canal 模拟 MySQL slave 的交互协议,伪装自己为 MySQL slave ,向 MySQL master 发送dump 协议MySQL master 收到 dum…...

ESP32C3 PWM输出

目前对于遥控双发差速小飞机计划采用如下架构: ESP32C3做主控,兼具遥控收发和飞行控制锂电池供电,带电量检测双发,720空心杯电机,55mm桨,带电流检测MPU6050加速度计和陀螺仪预留4个控制信号输出 马达控制要…...

二、GoLang输出HelloWorld、基本数据类型、变量常量定义、基本类型转换

一、输入Hello World go语言中,想要输出内容到控制台,package必须是main,包括方法名也必须是main, go语言输出的语法是 fmt 库。 package mainimport "fmt"func main() {// go语言中 输出内容 使用的库是 fmt库fmt.Pr…...

mojo初体验

目录标题 mojo初体验试用地址变量定义参数可变性和所有权Structures后续 mojo初体验 试用地址 https://www.modular.com/get-started 与python基础语法很相似。 变量定义 let定义不可变变量var定义可变变量 参数可变性和所有权 下面是一个基本的函数: fn add…...

python3 重启docker方法

一、工作中的问题 工作中进行测试时,需要修改nacos配置,修改完成后再重启对应的docker容器,让配置生效,研究了下,使用docker库可以做到。 如何修改nacos配置可以参见我的另一篇文章,传送门 python3 修改…...

【js】js中深拷贝与浅拷贝:

文章目录 一、浅拷贝(修改新对象会改到原对象)【1】通过 直接赋值【2】Object.assign()方法 二、深拷贝(修改新对象不会改到原对象)【1】通过JSON对象来实现深拷贝【2】 Object.create(&#xf…...

大文件上传demo,前端基于Uppy,后端基于koa

前言 文件上传基本上所有的管理系统之类的项目都有这么一个功能。因为使用了Element,可以方便的使用 其提供的Upload组件,对于普通上传来说基本上就够用了。但是有时候会涉及到大文件上传的需求,这时就会面临一些问题:比如文件上…...

typeScript--[函数定义]

一.TypesScript 函数的定义 函数的定义包括两种类型:函数声明和函数表达式。 1.函数声明 function hello(): string {return "hello" } 2.函数表达式 var hello1 function (): string {return "hello" } 二.函数之可选参数 参数后面的限…...

Spring初始化项目

1、官网用法 访问地址:https://start.spring.io idea配置:https://start.spring.io 2、阿里巴巴加速 访问地址:https://start.aliyun.com/bootstrap.html idea配置:https://start.aliyun.com 3、区别 官网阿里巴巴版本最新稍…...

Opencv 图像金字塔----高斯和拉普拉斯

原文:图像金字塔----高斯和拉普拉斯 图像金字塔是图像中多尺度表达的一种,最初用于机器视觉和图像压缩,最主要用于图像的分割、融合。 高斯金字塔 ( Gaussian pyramid): 高斯金字塔是由底部的最大分辨率图像逐次向下采样得到的一系列图像…...

gitLab(git)误提交命令

1.先使用下面命令查看一下分支上已提交的信息 git log 2.回退到之前的版本 git reset —hard 你要删除的提交哈希码(一般是离这个命令最近的一串数字) 3.覆盖掉远端的版本信息,使远端的仓库也回退到相应的版本 注意:切换到你提…...

Rust个人学习笔记2

一定要牢记Rust是基于表达式的语言&#xff0c;除了声明语句和表达式语句外&#xff0c;其他的都是表达式。所以if也是表达式&#xff0c;它可以被用作右值。 条件控制 if-else。cpp和python得结合。 fn main() {let number 34;if number < 0 {println!("number &l…...

深入浅出Android同步屏障机制

原文链接 Android Sync Barrier机制 诡异的假死问题 前段时间&#xff0c;项目上遇到了一个假死问题&#xff0c;随机出现&#xff0c;无固定复现规律&#xff0c;大量频繁随机操作后&#xff0c;便会出现假死&#xff0c;整个应用无法操作&#xff0c;不会响应事件&#xff…...

工程管理系统简介 工程管理系统源码 java工程管理系统 工程管理系统功能设计

鸿鹄工程项目管理系统 Spring CloudSpring BootMybatisVueElementUI前后端分离构建工程项目管理系统 1. 项目背景 一、随着公司的快速发展&#xff0c;企业人员和经营规模不断壮大。为了提高工程管理效率、减轻劳动强度、提高信息处理速度和准确性&#xff0c;公司对内部工程管…...

Python 专栏目录索引

文章目录 Python 环境搭建Python 语法 变量、print、注释和运算符Python 的基本结构Python 中的文件和文件夹操作Python 中常用库Python 常见问题及解决方案Python 应用实例 Python 环境搭建 vscode搭建Python环境 Python 语法 变量、print、注释和运算符 python语法 变量、…...

SSM学习

技术架构 crm的技术架构: 视图层(view):展示数据&#xff0c;跟用户交互。 html, css,js,jquery,bootstrap(ext / easyUI),jsp控制层(Controller):控制业客处理流程(接收请求,接收参数,封装参数;根据不同的请求调用业务 (servlet, ) springMVC ( , webwork,strutsl,struts2)业…...

.net项目部署Docker

1、项目生成的bin目录下创建Dockerfile文件 #运行环境描述&#xff0c;此处是用的Net5构建镜像 FROM mcr.microsoft.com/dotnet/sdk:6.0 AS build #复制文件到 docker容器中的app文件夹中 COPY . /app #设置工作目录为 app 文件夹&#xff0c;要和上面一致哦 WORKDIR /app #设…...