当前位置: 首页 > news >正文

对于pytorch和对应pytorch网站的探索

一、关于网站上面的那个教程:

适合PyTorch小白的官网教程:Learning PyTorch With Examples - 知乎 (zhihu.com)

这个链接也是一样的,

总的来说,里面讲了这么一件事:

如果没有pytorch的分装好的nn.module用来继承的话,需要设计一个神经网络就真的有很多需要处理的地方,明明可以用模板nn.module来继承得到自己的neural network的对象

然后,我们自己这个network里面设计我们想要实现的东西

[ Pytorch教程 ] 训练分类器 - pytorch中文网 (ptorch.com)

这个网站底部的链接还是有一些东西的

二、训练分类器中的代码-查漏补缺,加油!!

1.CIFAR-10中的图像大小为3x32x32,即尺寸为32x32像素的3通道彩色图像

2.torchvision.utils.make_grid()函数的参数意义和用法:

3.利用plt输出图像,必须是(h,w,channels)的顺序,所以从tensor过来需要permute或者transpose
def imshow(img): #定义这里的局部imshowimg = img / 2 + 0.5     # unnormalize,还是要回去的好吧,img=(img-0.5)/0.5这是均值normlizenpimg = img.numpy() #plt只能绘制numpy_array类型plt.imshow(np.transpose(npimg, (1, 2, 0))) #好像必须进行permute或者transpose得到(h,w,channels)
4.和f.max_pool2d是一个可以调用的函数对象,nn.MaxPool2d是一个模板,需要自己设置:

http://t.csdn.cn/mzqv7

5.torch.max(tensor,1)函数的用法:

http://t.csdn.cn/JMBwW

这篇文章讲得很好,

将每一行的最大值组成一个数组

二、代码研读+注释版:

#引入基本的库
import torch
import torchvision
import torchvision.transforms as transforms
#利用DataLoader获取train_loader和test_loader
transform = transforms.Compose( #定义ToTensor 和 3个channel上面的(0.5,0.5)正太分布[transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])#获取trainset,需要经过transform处理
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, #设置train_loader参数:batch_size=4,shuffleshuffle=True, num_workers=2) #这个num_woekers子进程不知道会不会报错#同样的处理获取test_loader
testset = torchvision.datasets.CIFAR10(root='./data', train=False,download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,shuffle=False, num_workers=2)#定义一个classes数组,其实是用来作为一个map映射使用的
classes = ('plane', 'car', 'bird', 'cat','deer', 'dog', 'frog', 'horse', 'ship', 'truck')
#展示一些图像,来点直观的感受
import matplotlib.pyplot as plt
import numpy as np# functions to show an imagedef imshow(img): #定义这里的局部imshowimg = img / 2 + 0.5     # unnormalize,还是要回去的好吧,img=(img-0.5)/0.5这是均值normlizenpimg = img.numpy() #plt只能绘制numpy_array类型plt.imshow(np.transpose(npimg, (1, 2, 0))) #好像必须进行permute或者transpose得到(h,w,channels)# get some random training images
dataiter = iter(trainloader)     #dataiter就是迭代器了
images, labels = next(dataiter) #获取第一个images图像数据 和 labels标签 ,注意iter.next()已经改为了next(iter)# show images
imshow(torchvision.utils.make_grid(images)) #以网格的方式显示图像
# print labels
print(' '.join('%5s' % classes[labels[j]] for j in range(4))) #输出labels1-4这样的标题
#定义neural network的结构
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as Fclass Net(nn.Module):def __init__(self):super(Net, self).__init__()self.conv1 = nn.Conv2d(3, 6, 5) #定义输入channel=3,输出channel=5,卷积核5*5,stride(default)=1,padding(default)=0self.pool = nn.MaxPool2d(2, 2)  #定义pooling池化,kernel_size=2*2,stride 右2,且下2self.conv2 = nn.Conv2d(6, 16, 5) #同上输出channel=16self.fc1 = nn.Linear(16 * 5 * 5, 120)  #下面定义了3个Linear函数self.fc2 = nn.Linear(120, 84)self.fc3 = nn.Linear(84, 10)def forward(self, x):x = self.pool(F.relu(self.conv1(x))) #conv1->relu->poolingx = self.pool(F.relu(self.conv2(x))) #conv2->relu->poolingx = x.view(-1, 16 * 5 * 5)           #调整为第二维数16*5*5的大小的tensorx = F.relu(self.fc1(x))              #fc1->relux = F.relu(self.fc2(x))              #fc2->relux = self.fc3(x)                      #output_linear->得到一个10维度的向量return xnet = Net() #创建一个net对象
#定义loss_func和optimizer优化器
import torch.optim as optimcriterion = nn.CrossEntropyLoss()  #分类的话,使用nn.CrossEntropyLoss()更好
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) #这里使用初级的SGD
#开始train多少个epoch了:
for epoch in range(2):  # 0-1总共2个epochrunning_loss = 0.0  #记录loss数值for i, data in enumerate(trainloader, 0): #利用迭代器获取索引和此次batch数据,0代表从第0个索引的batch开始# get the inputsinputs, labels = data #获取inputs图像数据batch 和 labels标签batch# wrap them in Variable#inputs, labels = Variable(inputs), Variable(labels) ,在新版的pytorch中这一行代码已经不需要了# zero the parameter gradientsoptimizer.zero_grad() #每次进行backward方向传播计算gradient之前先调用optimizer.zero_grad()清空,防止积累# forward + backward + optimize ,标准操作:model + criterion + backward + stepoutputs = net(inputs) loss = criterion(outputs, labels)loss.backward()optimizer.step()# print statistics ,每2000个batch进行对应的输出#running_loss += loss.data[0]  #将这次batch计算的loss加到running_loss厚葬 ,新版的pytorch中tensor.data弃用#改用tensor.item()了running_loss = loss.item()if i % 2000 == 1999:    # print every 2000 mini-batchesprint('[%d, %5d] loss: %.3f' %(epoch + 1, i + 1, running_loss / 2000)) #输出:第几个epoch,第几个batch,平均每个batch的lossrunning_loss = 0.0 #归零print('Finished Training')
#展示第一批
dataiter = iter(testloader)
images, labels = next(dataiter) #获取一个batch(上面设置了batch_size=4)的images图像数据 和 labels标签# print images
imshow(torchvision.utils.make_grid(images)) #通过网格形式
print('GroundTruth: ', ' '.join('%5s' % classes[labels[j]] for j in range(4)))
#使用上述的model对第一批进行预测
outputs = net(Variable(images))
#predicted = outputs.data.max(2,keepdim= True)[1] #这样就获得了一个数组
_, predicted = torch.max(outputs.data, 1)
#注意,classes是一个数组,不过是当作map映射使用的
for j in range(4):print(classes[predicted[j]])

 

#正式开始test了
correct = 0 #正确的数目
total = 0   #总共测试数目
for data in testloader:   #每次获取testloader中的1个batchimages, labels = dataoutputs = net(Variable(images)) _, predicted = torch.max(outputs.data, 1) #得到预测的结果数组total += labels.size(0)correct += (predicted == labels).sum()    #predicted数组和labels数组逐项比较print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total)) #输出正确率

 

#对这10种不同的物体对象的检测正确率进行分析:
class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
for data in testloader:images, labels = dataoutputs = net(Variable(images))_, predicted = torch.max(outputs.data, 1)c = (predicted == labels).squeeze() #c就是1个1维向量for i in range(4):               #一个batch有4张图label = labels[i]            #label就是0-9中那个类的indexclass_correct[label] += c[i] #如果c[i]==True就让class_correct+1class_total[label] += 1      #改类图的数目+1for i in range(10): #输出每个类的正确率print('Accuracy of %5s : %2d %%' % (classes[i], 100 * class_correct[i] / class_total[i]))

 

 

 

 

相关文章:

对于pytorch和对应pytorch网站的探索

一、关于网站上面的那个教程: 适合PyTorch小白的官网教程:Learning PyTorch With Examples - 知乎 (zhihu.com) 这个链接也是一样的, 总的来说,里面讲了这么一件事: 如果没有pytorch的分装好的nn.module用来继承的话,需要设计…...

和AI聊天:动态规划

动态规划 动态规划(Dynamic Programming,简称 DP)是一种常用于优化问题的算法。它解决的问题通常具有重叠子问题和最优子结构性质,可以通过将问题分解成相互依赖的子问题来求解整个问题的最优解。 动态规划算法主要分为以下几个步…...

微信小程序——使用插槽slot快捷开发

微信小程序的插槽(slot)是一种组件化的技术,用于在父组件中插入子组件的内容。通过插槽,可以将父组件中的一部分内容替换为子组件的内容,实现更灵活的组件复用和定制。 插槽的使用步骤如下: 在父组件的wx…...

大数据技术之Hadoop:使用命令操作HDFS(四)

目录 一、创建文件夹 二、查看指定目录下的内容 三、上传文件到HDFS指定目录下 四、查看HDFS文件内容 五、下载HDFS文件 六、拷贝HDFS文件 七、HDFS数据移动操作 八、HDFS数据删除操作 九、HDFS的其他命令 十、hdfs web查看目录 十一、HDFS客户端工具 11.1 下载插件…...

静态路由配置实验:构建多路由器网络拓扑实现不同业务网段互通

文章目录 一、实验背景与目的二、实验拓扑三、实验需求四、实验解法1. 配置 IP 地址2. 按照需求配置静态路由,实现连接 PC 的业务网段互通 摘要: 本实验旨在通过配置网络设备的IP地址和静态路由,实现不同业务网段之间的互通。通过构建一组具有…...

Python函数的概念以及定义方式

一. 前言 嗨喽~大家好呀,这里是魔王呐 ❤ ~! python更多源码/资料/解答/教程等 点击此处跳转文末名片免费获取 二. 什么是函数? 假设你现在是一个工人,如果你实现就准备好了工具,等你接收到任务的时候, 直接带上工…...

【数学建模竞赛】超详细Matlab二维三维图形绘制

二维图像绘制 绘制曲线图 g 是表示绿色 b--o是表示蓝色/虚线/o标记 c*是表示蓝绿色(cyan)/*标记 ‘MakerIndices,1:5:length(y) 每五个点取点(设置标记密度) 特殊符号的输入 序号 需求 函数字符结构 示例 1 上角标 ^{ } title( $ a…...

2023国赛数学建模E题思路代码 黄河水沙监测数据分析

E题最大的难度是数据处理,可以做一个假设,假设一定时间内流量跟含沙量不变,那么我们可以对数据进行向下填充,把所有的数据进行合并之后可以对其进行展开特性分析,在研究调水调沙的实际效果时,可以先通过分析…...

窗口延时、侧输出流数据处理

一 、 AllowedLateness API 延时关闭窗口 AllowedLateness 方法需要基于 WindowedStream 调用。AllowedLateness 需要设置一个延时时间,注意这个时间决定了窗口真正关闭的时间,而且是加上WaterMark的时间,例如 WaterMark的延时时间为2s&…...

发送HTTP请求

HTTP请求是一种客户端向服务器发送请求的协议。它是基于TCP/IP协议的应用层协议,用于在Web浏览器和Web服务器之间传输数据。 HTTP请求由以下几个部分组成: 请求行:包含请求方法、请求的URL和HTTP协议的版本。常见的请求方法有GET、POST、PUT、…...

高等工程数学张韵华版第四章课后题答案

下面答案仅供参考! 章节目录 第4章 欧氏空间和二次型 4.1内积和欧氏空间 4.1.1内积的定义 4.1.2欧氏空间的性质 4.1.3 正交投影 4.1.4 施密特正交化 4.2 正交变换和对称变换 4.2.1 正交变换 4.2.2 正交矩阵 4.2.3 对称变换 4.2.4 对称矩阵 4.3 二…...

wpf C# 用USB虚拟串口最高速下载大文件 每包400万字节 平均0.7s/M,支持批量多设备同时下载。自动识别串口。源码示例可自由定制。

C# 用USB虚拟串口下载大文件 每包400万字节 平均0.7s/M。支持批量多设备同时下载。自动识别串口。可自由定制。 int 32位有符号整数 -2147483648~2147483647 但500万字节时 write时报端口IO异常。可能是驱动限制的。 之前用这个助手发文件,连续发送&#xff0…...

代码随想录二刷day20

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、力扣654. 最大二叉树二、力扣617. 合并二叉树三、力扣700. 二叉搜索树中的搜索四、力扣98. 验证二叉搜索树 前言 一、力扣654. 最大二叉树 /*** Definitio…...

Yolov5如何训练自定义的数据集,以及使用GPU训练,涵盖报错解决

本文主要讲述了Yolov5如何训练自定义的数据集,以及使用GPU训练,涵盖报错解决,案例是检测图片中是否有救生圈。 最后的效果图大致如下: 效果图1效果图2 前言 系列文章 1、详细讲述Yolov5从下载、配置及如何使用GPU运行 2、…...

设计模式之单列模式

单列模式是一种经典的设计模式,在校招中最乐意考的设计模式之一~ 设计模式就是软件开发中的棋谱,大佬们针对一些常见的场景,总结出来的代码的编写套路,按照套路来写,不说你写的多好,至少不会太差~ 在校招中…...

linux内核模块编译方法详解

文章目录 前言一、静态加载法1.1 编写驱动程序1.2 将新功能配置在内核中1.3为新功能代码改写Makefile1.4 make menuconfig界面里将新功能对应的那项选择为<*> 二、动态加载法2.1 新功能源码与Linux内核源码在同一目录结构下2.2 新功能源码与Linux内核源码不在同一目录结构…...

简介shell的关联数组与普通数组

本文首先介绍shell的关联数组&#xff0c;然后介绍shell的普通数组&#xff0c;最后总结它们的共同语法。 shell的关联数组 定义一个关联数组&#xff0c;并打印它的key-value对 #!/bin/sh# 声明一个关联数组 declare -A HASH_MAP# 给关联数组赋值 HASH_MAP["Tom"…...

玩转Mysql系列 - 第17篇:存储过程自定义函数详解

这是Mysql系列第17篇。 环境&#xff1a;mysql5.7.25&#xff0c;cmd命令中进行演示。 代码中被[]包含的表示可选&#xff0c;|符号分开的表示可选其一。 需求背景介绍 线上程序有时候出现问题导致数据错误的时候&#xff0c;如果比较紧急&#xff0c;我们可以写一个存储来…...

自动驾驶:轨迹预测综述

自动驾驶&#xff1a;轨迹预测综述 轨迹预测的定义轨迹预测的分类基于物理的方法&#xff08;Physics-based&#xff09;基于机器学习的方法&#xff08;Classic Machine Learning-based&#xff09;基于深度学习的方法&#xff08;Deep Learning-based&#xff09;基于强化学习…...

【uniapp/uview】u-datetime-picker 选择器的过滤器用法

引入&#xff1a;要求日期选择的下拉框在分钟显示时&#xff0c;只显示 0 和 30 分钟&#xff1b; <u-datetime-picker :show"dateShow" :filter"timeFilter" confirm"selDateConfirm" cancel"dateCancel" v-model"value1&qu…...

springboot 百货中心供应链管理系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;百货中心供应链管理系统被用户普遍使用&#xff0c;为方…...

<6>-MySQL表的增删查改

目录 一&#xff0c;create&#xff08;创建表&#xff09; 二&#xff0c;retrieve&#xff08;查询表&#xff09; 1&#xff0c;select列 2&#xff0c;where条件 三&#xff0c;update&#xff08;更新表&#xff09; 四&#xff0c;delete&#xff08;删除表&#xf…...

K8S认证|CKS题库+答案| 11. AppArmor

目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作&#xff1a; 1&#xff09;、切换集群 2&#xff09;、切换节点 3&#xff09;、切换到 apparmor 的目录 4&#xff09;、执行 apparmor 策略模块 5&#xff09;、修改 pod 文件 6&#xff09;、…...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

springboot整合VUE之在线教育管理系统简介

可以学习到的技能 学会常用技术栈的使用 独立开发项目 学会前端的开发流程 学会后端的开发流程 学会数据库的设计 学会前后端接口调用方式 学会多模块之间的关联 学会数据的处理 适用人群 在校学生&#xff0c;小白用户&#xff0c;想学习知识的 有点基础&#xff0c;想要通过项…...

Win系统权限提升篇UAC绕过DLL劫持未引号路径可控服务全检项目

应用场景&#xff1a; 1、常规某个机器被钓鱼后门攻击后&#xff0c;我们需要做更高权限操作或权限维持等。 2、内网域中某个机器被钓鱼后门攻击后&#xff0c;我们需要对后续内网域做安全测试。 #Win10&11-BypassUAC自动提权-MSF&UACME 为了远程执行目标的exe或者b…...

「Java基本语法」变量的使用

变量定义 变量是程序中存储数据的容器&#xff0c;用于保存可变的数据值。在Java中&#xff0c;变量必须先声明后使用&#xff0c;声明时需指定变量的数据类型和变量名。 语法 数据类型 变量名 [ 初始值]; 示例&#xff1a;声明与初始化 public class VariableDemo {publi…...

Element-Plus:popconfirm与tooltip一起使用不生效?

你们好&#xff0c;我是金金金。 场景 我正在使用Element-plus组件库当中的el-popconfirm和el-tooltip&#xff0c;产品要求是两个需要结合一起使用&#xff0c;也就是鼠标悬浮上去有提示文字&#xff0c;并且点击之后需要出现气泡确认框 代码 <el-popconfirm title"是…...

Qt学习及使用_第1部分_认识Qt---Qt开发基本流程

前言 学以致用,通过QT框架的学习,一边实践,一边探索编程的方方面面. 参考书:<Qt 6 C开发指南>(以下称"本书") 标识说明:概念用粗体倾斜.重点内容用(加粗黑体)---重点内容(红字)---重点内容(加粗红字), 本书原话内容用深蓝色标识,比较重要的内容用加粗倾…...

使用homeassistant 插件将tasmota 接入到米家

我写一个一个 将本地tasmoat的的设备同通过ha集成到小爱同学的功能&#xff0c;利用了巴法接入小爱的功能&#xff0c;将本地mqtt转发给巴法以实现小爱控制的功能&#xff0c;前提条件。1需要tasmota 设备&#xff0c; 2.在本地搭建了mqtt服务可&#xff0c; 3.搭建了ha 4.在h…...