当前位置: 首页 > news >正文

redis集群架构详解

一、集群架构搭建

1、配置

在一台机器上模拟多台机器搭建redis集群,一个集群代表一台物理机

集群1路径:

  • /usr/local/redis/redis-cluster/cluster1/9001/redis.conf
  • /usr/local/redis/redis-cluster/cluster1/9004/redis.conf
  • /usr/local/redis/redis-cluster/cluster1/9007/redis.conf

集群2路径:

  • /usr/local/redis/redis-cluster/cluster2/9002/redis.conf
  • /usr/local/redis/redis-cluster/cluster2/9005/redis.conf
  • /usr/local/redis/redis-cluster/cluster2/9008/redis.conf

集群3路径:

  • /usr/local/redis/redis-cluster/cluster3/9003/redis.conf
  • /usr/local/redis/redis-cluster/cluster3/9006/redis.conf
  • /usr/local/redis/redis-cluster/cluster3/9009/redis.conf

redis.conf具体关键配置修改如下(配置时目录别搞错了):

(1)daemonize yes
(2)port 9001(分别对每个机器的端口号进行设置)
(3)pidfile /var/run/redis_9001.pid  # 把pid进程号写入pidfile配置的文件
(4)dir /usr/local/redis/redis-cluster/cluster1/9001/(指定数据文件存放位置,必须要指定不同的目录位置,不然会丢失数据)
(5)cluster-enabled yes(启动集群模式)
(6)cluster-config-file nodes-9001.conf(集群节点信息文件,这里900x最好和port对应上)
(7)cluster-node-timeout 10000(8)# bind 127.0.0.1(bind绑定的是自己机器网卡的ip,如果有多块网卡可以配多个ip,代表允许客户端通过机器的哪些网卡ip去访问,内网一般可以不配置bind,注释掉即可)(9)protected-mode  no   (关闭保护模式)(10)appendonly yes
如果要设置密码需要增加如下配置:(11)requirepass foobared     (设置redis访问密码)(12)masterauth foobared      (设置集群节点间访问密码,跟上面一致)

 2、启动

/usr/local/redis/redis-6.2.7/src/redis-server /usr/local/redis/redis-cluster/cluster*/900*/redis.conf    启动命令
ps -ef|grep redis    查看所有redis节点是否都启动成功

 3、创建redis集群

用redis-cli创建整个redis集群(redis5以前的版本集群是依靠ruby脚本redis-trib.rb实现),执行这条命令需要确认三台机器之间的redis实例要能相互访问,可以先简单把所有机器防火墙关掉,如果不关闭防火墙则需要打开redis服务端口和集群节点gossip通信端口16379(默认是在redis端口号上加1W)

注意:下面这条创建集群的命令大家不要直接复制,里面的空格编码可能有问题导致创建集群不成功(下面命令里的--cluster-replicas 2代表为每个创建的主服务器节点创建两个从服务器节点)

/usr/local/redis/redis-6.2.7/src/redis-cli -a foobared --cluster create --cluster-replicas 2 192.168.146.128:9001 192.168.146.128:9002 192.168.146.128:9003 192.168.146.128:9004 192.168.146.128:9005 192.168.146.128:9006 192.168.146.128:9007 192.168.146.128:9008 192.168.146.128:9009    默认选择前三个ip:port作为master

出现如下情况只是说明多个从节点和主节点在同一台机器的警告(如果在同一台机器上如果机器宕机了,如果从节点在其它机器上可以继续使用,在一同台机器机器宕机了就没法对外提供服务了,因此redis有这个警告,现在测试暂时跳过)

redis集群的数据是分片存储的,多台主从集群redis通过hash定位算法定位到存储到定义的槽位主从上,redis总共分成16384个分片,0-5460的slots分给192.168.146.128:9001的机器上存储,5461-10922的slots分给192.168.146.128:9002的机器上存储,10923-16383的slots分给192.168.146.128:9003的机器上存储

4、验证集群

(1)连接任意一个客户端即可:./redis-cli -c -h -p (-a访问服务端密码,-c表示集群模式,指定ip地址和端口号)
/usr/local/redis/redis-6.2.7/src/redis-cli -a foobared -c -h 192.168.146.128 -p 9001
(2)进行验证: cluster info(查看集群信息)、cluster nodes(查看节点列表)
(3)进行数据操作验证
(4)关闭集群则需要逐个进行关闭,使用命令:
/usr/local/redis/redis-6.2.7/src/redis-cli -a foobared -c -h 192.168.146.128 -p 900* shutdown

5、主节点kill 

我重新又在另一个地方搭的redis集群,只是ip地址不同

可以看到9002是作为主节点的从节点是9004和9005,这时候把9002 kill掉再运行用cluster nodes查看集群元数据

ps -ef|grep redis
kill 305851    确认进程id kill
cluster nodes    在9003上输入

这时候9004代替9002成为主节点了,再次启动9002会成为9004的从节点

/usr/local/redis/redis-7.0.12/src/redis-server /usr/local/redis/redis-cluster/cluster2/9002/redis.conf

 6、增加redis实例

再增加一个redis cluster称为cluster4

集群4路径:

  • /usr/local/redis/redis-cluster/cluster4/9010/redis.conf
  • /usr/local/redis/redis-cluster/cluster4/9011/redis.conf
  • /usr/local/redis/redis-cluster/cluster4/9012/redis.conf

配置和9001之前配置的一样改一下路径就ok,开始启动

/usr/local/redis/redis-7.0.12/src/redis-server /usr/local/redis/redis-cluster/cluster4/9010/redis.conf
/usr/local/redis/redis-7.0.12/src/redis-server /usr/local/redis/redis-cluster/cluster4/9011/redis.conf
/usr/local/redis/redis-7.0.12/src/redis-server /usr/local/redis/redis-cluster/cluster4/9012/redis.conf

查看帮助文档

/usr/local/redis/redis-7.0.12/src/redis-cli --cluster help

  1. create:创建一个集群环境host1:port1 ... hostN:portN
  2. call:可以执行redis命令
  3. add-node:将一个节点添加到集群里,第一个参数为新节点的ip:port,第二个参数为集群中任意一个已经存在的节点的ip:port
  4. del-node:移除一个节点
  5. reshard:重新分片
  6. check:检查集群状态
 配置9010为主节点

# 使用add-node命令新增一个主节点9010(master),前面的ip:port为新增节点,后面的ip:port为已知存在节点,看到日志最后有"[OK] New node added correctly"提示代表新节点加入成功

/usr/local/redis/redis-7.0.12/src/redis-cli -a foobared --cluster add-node 192.168.64.128:9010 192.168.64.128:9001

# 查看集群状态

/usr/local/redis/redis-7.0.12/src/redis-cli -a foobared -c -h 192.168.64.128 -p 9001
cluster nodes

注意:当添加节点成功以后,新增的节点不会有任何数据,因为它还没有分配任何的slot(hash槽),我们需要为新节点手工分配hash槽 

# 使用redis-cli命令为9010分配hash槽,找到集群中的任意一个主节点,对其进行重新分片工作。

/usr/local/redis/redis-7.0.12/src/redis-cli -a foobared --cluster reshard 192.168.64.128:9001

输出如下:

... ...

How many slots do you want to move (from 1 to 16384)? 600

(ps:需要多少个槽移动到新的节点上,自己设置,比如600个hash槽)

What is the receiving node ID? 4f2c50c3749393ebe64bdb6894b0921e9f21da15

(ps:把这600个hash槽移动到哪个节点上去,需要指定节点id)

Please enter all the source node IDs.

  Type 'all' to use all the nodes as source nodes for the hash slots.

  Type 'done' once you entered all the source nodes IDs.

Source node 1:all

(ps:输入all为从所有主节点(9001,9003,9004)中分别抽取相应的槽数指定到新节点中,抽取的总槽数为600个)

 ... ...

Do you want to proceed with the proposed reshard plan (yes/no)? yes

(ps:输入yes确认开始执行分片任务)

... ...

 # 查看下最新的集群状态

/usr/local/redis/redis-7.0.12/src/redis-cli -a foobared -c -h 192.168.64.128 -p 9001
cluster nodes

如上图所示,现在我们的9010已经有hash槽了,也就是说可以在9010上进行读写数据啦!到此为止我们的9010已经加入到集群中,并且是主节点(Master) 

配置9011和9012为9010的从节点

# 添加从节点9011和9012到集群中去并查看集群状态

/usr/local/redis/redis-7.0.12/src/redis-cli -a foobared --cluster add-node 192.168.64.128:9011 192.168.64.128:9001
/usr/local/redis/redis-7.0.12/src/redis-cli -a foobared --cluster add-node 192.168.64.128:9012 192.168.64.128:9001

 如图所示,还是一个master节点,没有被分配任何的hash槽。

# 我们需要执行replicate命令来指定当前节点(从节点)的主节点id为哪个,首先需要连接新加的9011和9012节点的客户端,然后使用集群命令进行操作,把当前的9011和9012(slave)节点指定到一个主节点下(这里使用之前创建的9010主节点)

/usr/local/redis/redis-7.0.12/src/redis-cli -a foobared -c -h 192.168.64.128 -p 9011
cluster replicate 4f2c50c3749393ebe64bdb6894b0921e9f21da15  #后面这串id为9010的节点id/usr/local/redis/redis-7.0.12/src/redis-cli -a foobared -c -h 192.168.64.128 -p 9012
cluster replicate 4f2c50c3749393ebe64bdb6894b0921e9f21da15

# 查看集群状态,9011和9012节点已成功添加为9010节点的从节点 

 7、删除节点

把刚刚新增的9010主节点和它对应的从节点9011、9012删除

删除9011和9012从节点
/usr/local/redis/redis-7.0.12/src/redis-cli -a foobared --cluster del-node 192.168.64.128:9011 763a49b071f649daed0c7376484fbc998e36c3b4
/usr/local/redis/redis-7.0.12/src/redis-cli -a foobared --cluster del-node 192.168.64.128:9012 de8849844179ef6116c9bebb15a41bb5d79b901b

# 再次查看集群状态,如下图所示,9011和9012这个slave节点已经移除,并且该节点的redis服务也已被停止

删除9010主节点

 最后,我们尝试删除之前加入的主节点9010,这个步骤相对比较麻烦一些,因为主节点的里面是有分配了hash槽的,所以我们这里必须先把9010里的hash槽放入到其他的可用主节点中去,然后再进行移除节点操作,不然会出现数据丢失问题(目前只能把master的数据迁移到一个节点上,暂时做不了平均分配功能),执行命令如下:

/usr/local/redis/redis-7.0.12/src/redis-cli -a foobared --cluster reshard 192.168.64.128:9010

输出如下(由于我在不同地方搭集群,ip和ID可能不一样):

 ... ...

How many slots do you want to move (from 1 to 16384)? 600

What is the receiving node ID? d226c852b51af81d58d535c6cc0f80e0ddc6537d

(ps:这里是需要把数据移动到哪?9001的主节点id)

Please enter all the source node IDs.

  Type 'all' to use all the nodes as source nodes for the hash slots.

  Type 'done' once you entered all the source nodes IDs.

Source node 1:b8998a2129a85f2955f49468cf64d066e632a772

(ps:这里是需要数据源,也就是我们的9010节点id)

Source node 2:done

(ps:这里直接输入done 开始生成迁移计划)

 ... ...

Do you want to proceed with the proposed reshard plan (yes/no)? Yes

(ps:这里输入yes开始迁移)

至此,我们已经成功的把9010主节点的数据迁移到9001上去了,我们可以看一下现在的集群状态如下图,你会发现9010下面已经没有任何hash槽了,证明迁移成功!

# 最后我们直接使用del-node命令删除9010主节点即可

/usr/local/redis/redis-6.2.7/src/redis-cli -a foobared --cluster del-node 192.168.146.128:9010 b8998a2129a85f2955f49468cf64d066e632a772

# 查看集群状态,和增加节点之前一样

二、Java代码操作redis集群

1、jedisCluster操作redis集群

引入依赖

<dependency><groupId>redis.clients</groupId><artifactId>jedis</artifactId><version>2.9.0</version>
</dependency>

测试 

public class RedisClusterTest {public static void main(String[] args) throws IOException {JedisPoolConfig config = new JedisPoolConfig();config.setMaxTotal(20);config.setMaxIdle(10);config.setMinIdle(5);Set<HostAndPort> jedisClusterNode = new HashSet<HostAndPort>();jedisClusterNode.add(new HostAndPort("192.168.146.128", 9001));jedisClusterNode.add(new HostAndPort("192.168.146.128", 9002));jedisClusterNode.add(new HostAndPort("192.168.146.128", 9003));jedisClusterNode.add(new HostAndPort("192.168.146.128", 9004));jedisClusterNode.add(new HostAndPort("192.168.146.128", 9005));jedisClusterNode.add(new HostAndPort("192.168.146.128", 9006));jedisClusterNode.add(new HostAndPort("192.168.146.128", 9007));jedisClusterNode.add(new HostAndPort("192.168.146.128", 9008));jedisClusterNode.add(new HostAndPort("192.168.146.128", 9009));JedisCluster jedisCluster = null;try {//connectionTimeout:指的是连接一个url的连接等待时间//soTimeout:指的是连接上一个url,获取response的返回等待时间jedisCluster = new JedisCluster(jedisClusterNode, 6000, 5000, 10, "foobared", config);System.out.println(jedisCluster.set("cluster", "gao"));System.out.println(jedisCluster.get("cluster"));} catch (Exception e) {e.printStackTrace();} finally {if (jedisCluster != null)jedisCluster.close();}}
}

2、springboot操作redis集群

引入依赖

<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId>
</dependency><dependency><groupId>org.apache.commons</groupId><artifactId>commons-pool2</artifactId>
</dependency>

配置springboot的yml文件

server:port: 8080spring:redis:database: 0timeout: 3000password: foobaredcluster:nodes: 192.168.146.128:9001,192.168.146.128:9002,192.168.146.128:9003,192.168.146.128:9004,192.168.146.128:9005,192.168.146.128:9006,192.168.146.128:9007,192.168.146.128:9008,192.168.146.128:9009lettuce:pool:max-idle: 50min-idle: 10max-active: 100max-wait: 1000

 测试

@RestController
public class RedisController {private static final Logger logger = LoggerFactory.getLogger(RedisController.class);@Autowiredprivate StringRedisTemplate stringRedisTemplate;@RequestMapping("/test_cluster")public void testCluster() throws InterruptedException {stringRedisTemplate.opsForValue().set("gao", "666");System.out.println(stringRedisTemplate.opsForValue().get("gao"));}
}

三、redis原理

Redis Cluster 将所有数据划分为 16384 个 slots(槽位),每个节点负责其中一部分槽位。槽位的信息存储于每个节点中。

当 Redis Cluster 的客户端来连接集群时,它也会得到一份集群的槽位配置信息并将其缓存在客户端本地。这样当客户端要查找某个 key 时,可以直接定位到目标节点。同时因为槽位的信息可能会存在客户端与服务器不一致的情况,还需要纠正机制来实现槽位信息的校验调整。

1、槽位定位算法 

Cluster 默认会对 key 值使用 crc16 算法进行 hash 得到一个整数值,然后用这个整数值对 16384 进行取模来得到具体槽位。

HASH_SLOT = CRC16(key) mod 16384

2、跳转重定位

当客户端向一个错误的节点发出了指令,该节点会发现指令的 key 所在的槽位并不归自己管理,这时它会向客户端发送一个特殊的跳转指令携带目标操作的节点地址,告诉客户端去连这个节点去获取数据。客户端收到指令后除了跳转到正确的节点上去操作,还会同步更新纠正本地的槽位映射表缓存,后续所有 key 将使用新的槽位映射表。

3、Redis集群节点间的通信机制

redis cluster节点间采取gossip协议进行通信 

  • 维护集群的元数据(集群节点信息,主从角色,节点数量,各节点共享的数据等)有两种方式:集中式和gossip 

集中式: 

优点在于元数据的更新和读取,时效性非常好,一旦元数据出现变更立即就会更新到集中式的存储中,其他节点读取的时候立即就可以立即感知到;不足在于所有的元数据的更新压力全部集中在一个地方,可能导致元数据的存储压力。 很多中间件都会借助zookeeper集中式存储元数据。

gossip:

gossip协议包含多种消息,包括ping,pong,meet,fail等等。 

  1. meet:某个节点发送meet给新加入的节点,让新节点加入集群中,然后新节点就会开始与其他节点进行通信;
  2. ping:每个节点都会频繁给其他节点发送ping,其中包含自己的状态还有自己维护的集群元数据,互相通过ping交换元数据(类似自己感知到的集群节点增加和移除,hash slot信息等); 
  3. pong: 对ping和meet消息的返回,包含自己的状态和其他信息,也可以用于信息广播和更新; 
  4. fail: 某个节点判断另一个节点fail之后,就发送fail给其他节点,通知其他节点,指定的节点宕机了。

gossip协议的优点在于元数据的更新比较分散,不是集中在一个地方,更新请求会陆陆续续,打到所有节点上去更新,有一定的延时,降低了压力;缺点在于元数据更新有延时可能导致集群的一些操作会有一些滞后。

gossip通信的10000端口 

每个节点都有一个专门用于节点间gossip通信的端口,就是自己提供服务的端口号+10000,比如7001,那么用于节点间通信的就是17001端口。 每个节点每隔一段时间都会往另外几个节点发送ping消息,同时其他几点接收到ping消息之后返回pong消息。

4、网络抖动

真实世界的机房网络往往并不是风平浪静的,它们经常会发生各种各样的小问题。比如网络抖动就是非常常见的一种现象,突然之间部分连接变得不可访问,然后很快又恢复正常。

为解决这种问题,Redis Cluster 提供了一种选项cluster-node-timeout,表示当某个节点持续 timeout 的时间失联时,才可以认定该节点出现故障,需要进行主从切换。如果没有这个选项,网络抖动会导致主从频繁切换 (数据的重新复制)。

5、Redis集群选举原理分析

当slave发现自己的master变为FAIL状态时,便尝试进行Failover,以期成为新的master。由于挂掉的master可能会有多个slave,从而存在多个slave竞争成为master节点的过程, 其过程如下:

  1. slave发现自己的master变为FAIL
  2. 将自己记录的集群currentEpoch加1,并广播FAILOVER_AUTH_REQUEST 信息
  3. 其他节点收到该信息,只有master响应,判断请求者的合法性,并发送FAILOVER_AUTH_ACK,对每一个epoch只发送一次ack
  4. 尝试failover的slave收集master返回的FAILOVER_AUTH_ACK
  5. slave收到超过半数master的ack后变成新Master(这里解释了集群为什么至少需要三个主节点,如果只有两个,当其中一个挂了,只剩一个主节点是不能选举成功的)
  6. slave广播Pong消息通知其他集群节点。

从节点并不是在主节点一进入 FAIL 状态就马上尝试发起选举,而是有一定延迟,一定的延迟确保我们等待FAIL状态在集群中传播,slave如果立即尝试选举,其它masters或许尚未意识到FAIL状态,可能会拒绝投票

•延迟计算公式:

DELAY = 500ms + random(0 ~ 500ms) + SLAVE_RANK * 1000ms

SLAVE_RANK表示此slave已经从master复制数据的总量的rank。Rank越小代表已复制的数据越新。这种方式下,持有最新数据的slave将会首先发起选举(理论上)。

6、集群脑裂数据丢失问题

redis集群没有过半机制会有脑裂问题,网络分区导致脑裂后多个主节点对外提供写服务,一旦网络分区恢复,会将其中一个主节点变为从节点,这时会有大量数据丢失。

规避方法可以在redis配置里加上参数(这种方法不可能百分百避免数据丢失,参考集群leader选举机制):

min-replicas-to-write 1  //写数据成功最少同步的slave数量,这个数量可以模仿大于半数机制配置,比如集群总共三个节点可以配置1,加上leader就是2,超过了半数

注意:这个配置在一定程度上会影响集群的可用性,比如slave要是少于1个,这个集群就算leader正常也不能提供服务了,需要具体场景权衡选择。

7、集群是否完整才能对外提供服务

当redis.conf的配置cluster-require-full-coverage为no时,表示当负责一个插槽的主库下线且没有相应的从库进行故障恢复时,集群仍然可用,如果为yes则集群不可用。

8、Redis集群为什么至少需要三个master节点,并且推荐节点数为奇数?

因为新master的选举需要大于半数的集群master节点同意才能选举成功,如果只有两个master节点,当其中一个挂了,是达不到选举新master的条件的。

奇数个master节点可以在满足选举该条件的基础上节省一个节点,比如三个master节点和四个master节点的集群相比,大家如果都挂了一个master节点都能选举新master节点,如果都挂了两个master节点都没法选举新master节点了,所以奇数的master节点更多的是从节省机器资源角度出发说的。

9、Redis集群对批量操作命令的支持 

对于类似mset,mget这样的多个key的原生批量操作命令,redis集群只支持所有key落在同一slot的情况,如果有多个key一定要用mset命令在redis集群上操作,则可以在key的前面加上{XX},这样参数数据分片hash计算的只会是大括号里的值,这样能确保不同的key能落到同一slot里去,示例如下:

mset {user1}:1:name gao {user1}:1:age 18

假设name和age计算的hash slot值不一样,但是这条命令在集群下执行,redis只会用大括号里的 user1 做hash slot计算,所以算出来的slot值肯定相同,最后都能落在同一slot。

10、哨兵leader选举流程

当一个master服务器被某sentinel视为下线状态后,该sentinel会与其他sentinel协商选出sentinel的leader进行故障转移工作。每个发现master服务器进入下线的sentinel都可以要求其他sentinel选自己为sentinel的leader,选举是先到先得。同时每个sentinel每次选举都会自增配置纪元(选举周期),每个纪元中只会选择一个sentinel的leader。如果所有超过一半的sentinel选举某sentinel作为leader。之后该sentinel进行故障转移操作,从存活的slave中选举出新的master,这个选举过程跟集群的master选举很类似。

哨兵集群只有一个哨兵节点,redis的主从也能正常运行以及选举master,如果master挂了,那唯一的那个哨兵节点就是哨兵leader了,可以正常选举新master。

不过为了高可用一般都推荐至少部署三个哨兵节点。为什么推荐奇数个哨兵节点原理跟集群奇数个master节点类似。

相关文章:

redis集群架构详解

一、集群架构搭建 1、配置 在一台机器上模拟多台机器搭建redis集群&#xff0c;一个集群代表一台物理机 集群1路径&#xff1a; /usr/local/redis/redis-cluster/cluster1/9001/redis.conf/usr/local/redis/redis-cluster/cluster1/9004/redis.conf/usr/local/redis/redis-…...

nodejs设置镜像

1、npm镜像地址配置 -- 查看 npm 安装目录 npm root -g-- 查看 npm 配置信息 npm config list-- 查询当前镜像配置 npm get registry-- 或者仅修改 npm 命令镜像 -- 设置为淘宝镜像 npm config set registry https://registry.npmmirror.com -- 修改为官方镜像 npm config set…...

CSS中如何在table中隐藏表格中从第4个开始的多个 <tr> 元素

隐藏指定行 使用 CSS 的 nth-child 选择器来选择表格中的特定行&#xff0c;并隐藏它们。 以下是一个示例 CSS 规则&#xff0c;用于隐藏表格中的第 4 个和第 5 个行&#xff08;索引从 1 开始&#xff09;&#xff1a; table tr:nth-child(4), table tr:nth-child(5) {displ…...

【类和对象】③友元类

文章目录 1.初始化列表2.static静态成员3.友元 1.初始化列表 我们知道在创建对象时&#xff0c;编译器通过调用构造函数&#xff0c;给对象中各个成员变量一个合适的初始值。虽然调用构造函数之后&#xff0c;对象中已经有了一个初始值&#xff0c;但是不能将其称为对对象中成…...

算法通关村第十六关:黄金挑战:滑动窗口与堆结合

黄金挑战&#xff1a;滑动窗口与堆结合 堆的大小一般是有限的&#xff0c;能直接返回当前位置下的最大值或者最小值 该特征与滑动窗口结合&#xff0c;可以解决一些特定场景的问题 1. 滑动窗口与堆问题的结合 LeetCode239 https://leetcode.cn/problems/sliding-window-maxi…...

6.2.2 【MySQL】InnoDB中的索引方案

上边之所以称为一个简易的索引方案&#xff0c;是因为我们为了在根据主键值进行查找时使用二分法快速定位具体的目录项而假设所有目录项都可以在物理存储器上连续存储&#xff0c;但是这样做有几个问题&#xff1a; InnoDB 是使用页来作为管理存储空间的基本单位&#xff0c;也…...

划片机实现装片、对准、切割、清洗到卸片的自动化操作

划片机是一种用于切割和分离材料的设备&#xff0c;通常用于光学和医疗、IC、QFN、DFN、半导体集成电路、GPP/LED氮化镓等芯片分立器件、LED封装、光通讯器件、声表器件、MEMS等行业。划片机可以实现从装片、对准、切割、清洗到卸片的自动化操作。 以下是划片机实现这些操作的步…...

OpenCV(二十五):边缘检测(一)

目录 1.边缘检测原理 2.Sobel算子边缘检测 3.Scharr算子边缘检测 4.两种算子的生成getDerivKernels() 1.边缘检测原理 其原理是基于图像中灰度值的变化来捕捉图像中的边界和轮廓。梯度则表示了图像中像素强度变化的强弱和方向。 所以沿梯度方向找到有最大梯度值的像素&…...

上行取消指示 DCI format 2_4

上篇介绍了DCI format 2_1的DL传输中断的内容&#xff0c;这篇就看下DCI format 2_4有关的UL 传输取消机制&#xff0c;值得注意的是这里的UL传输针对的是PUSCH和SRS传输。 UL cancellation DCI format 2_4相关机制引入的背景与DCI format 2_1一样&#xff0c;都是因为URLLC和e…...

百望云蝉联2023「Cloud 100 China 」榜单 综合实力再获认可

9月7日&#xff0c;2023 Cloud 100 China 榜单于上海中心正式发布&#xff0c;榜单由靖亚资本与崔牛会联合推出&#xff0c;百望云凭借着过硬的综合实力与卓越的技术创新能力&#xff0c;再次荣登榜单&#xff0c;位居第六位。 本届评选&#xff0c;Top 100 企业的数据指标的权…...

力扣刷题班第1节:Python语法常遗漏的知识

以下仅仅记录和后面力扣刷题相关的、且平常会遗漏的语法知识。 下面这些笔记都是点到为止&#xff0c;不进行深入解释。大多数学过python的朋友看到就知道什么意思的&#xff0c;我就不解释了 字符串 str "I am a cook"# 按照空格切分 str.split(" ") …...

GET 和 POST请求的区别是什么

GET和POST是HTTP请求的两种基本方法&#xff0c;要说它们的区别&#xff0c;接触过WEB开发的人都能说出一二。 最直观的区别就是GET把参数包含在URL中&#xff0c;POST通过request body传递参数。 你轻轻松松的给出了一个“标准答案”&#xff1a; GET在浏览器回退时是无害的…...

Python数据分析实战-表连接-merge四种连接方式用法(附源码和实现效果)

实现功能 表连接-merge四种连接方式用法&#xff0c; 将两个pandas表根据一个或者多个键&#xff08;列&#xff09;值进行连接。 实现代码 import pandas as pddf1 pd.DataFrame({key: [a, b, d],data1: range(3)}) print(df1)df2 pd.DataFrame({key: [a, b, c, a, b],dat…...

NFTScan 浏览器再升级:优质数据服务新体验来袭

当前&#xff0c;高质量的 NFT 数据服务已成为区块链用户和开发者的必需。为满足用户数据需求&#xff0c;NFTScan 主站近日进行全面升级&#xff0c;优化了数据服务板块的页面结构&#xff0c;实现更清晰简洁的布局和交互。 NFTScan 的改版充分考虑用户和开发者的数据体验&am…...

C# 去除utf-8 BOM头

static void Main(string[] args) {var a1 Encoding.UTF8.GetBytes("<");var a2 Encoding.UTF8.GetBytes("&#xfeff;<");Console.WriteLine("去除utf-8 bom之前");Console.WriteLine(Encoding.UTF8.GetString(a1));Console.WriteLine(…...

Java注解以及自定义注解

Java注解以及自定义注解 要深入学习注解&#xff0c;我们就必须能定义自己的注解&#xff0c;并使用注解&#xff0c;在定义自己的注解之前&#xff0c;我们就必须要了解Java为 我们提供的元注解和相关定义注解的语法。 1、注解 1.1 注解的官方定义 注解是一种元数据形式。…...

[开学季]ChatPaper全流程教程

文章目录 1. 粗筛&#xff1a;论文全文总结1.1 使用步骤&#xff1a; 1.2 功能描述&#xff1a;2. 论文问答&#xff1a;2. 精读&#xff1a;学术版GPT的论文翻译2.0 论文精读的正确姿势2.1 使用场景1&#xff1a;arxiv论文完美翻译2.2 本地PDF全文翻译&#xff1a;2.3 关于免费…...

Spring学习笔记——4

Spring学习笔记——4 一、基于AOP的声明式事务控制1.1、Spring事务编程概述1.2、搭建测试环境1.3、基于XML声明式事务控制1.4、基于注解声明式事务控制 二、Spring整合web环境2.1、JavaWeb三大组件作用及其特点2.2、Spring整合web环境的思路及实现2.3、Spring的Web开发组件spri…...

Python数据科学入门

推荐&#xff1a;使用 NSDT场景编辑器 快速搭建3D应用场景 来自不同角色的人都希望保住自己的工作&#xff0c;因此他们将致力于发展自己的技能以适应当前的市场。这是一个竞争激烈的市场&#xff0c;我们看到越来越多的人对数据科学产生兴趣;该行业有数千门在线课程、训练营和…...

Ubuntu 22.04 编译 DPDK 19.11 igb_uio 和 kni 报错解决办法

由于 Ubuntu22.04 内核版本和gcc版本比较高&#xff0c;在编译dpdk时会报错。 我使用的编译命令是&#xff1a; make install Tx86_64-native-linuxapp-gcc主要有以下几个错误&#xff1a; 1.error: this statement may fall through Build kernel/linux/igb_uioCC [M] /roo…...

Android Studio.exe 下载 2023 最新更新,网盘下载

方便大家下载&#xff0c; 放到了网盘上&#xff0c;自己也保留一份。&#xff08;最前面是最新版本的&#xff0c;慎用&#xff0c; 会有bug什么的&#xff09; 个人使用4.2版本的&#xff0c;感觉够用稳定&#xff0c;其他版本有莫名奇妙的bug&#xff0c;让人头大&#xff0…...

element的el-select给下拉框添加背景

第一步 :popper-append-to-body"false" <el-selectv-model"value"placeholder"请选择":popper-append-to-body"false"><el-optionv-for"item in options":key"item.value":label"item.label&quo…...

正确理解党籍和党龄;入党和转正时间

总的来说党籍、党龄、入党时间、转正时间在性质和时间阶段上均有所区别。 党籍&#xff1a;是指党员资格。经支部党员大会讨论&#xff0c;被批准为预备党员之日起&#xff0c;就有了党籍。若被取消预备党员资格、劝退除名、自行脱党、开除党籍的&#xff0c;就失去了党籍。 …...

C语言基础:printf 函数介绍;以及常用四种常用的数据类型

printf 函数介绍 #include <stdio.h> int main() { /* * %c:字符 ; %d:带符号整数; %f: 浮点数; %s: 一串字符&#xff1b; */ int age21; printf(“hello %s,you are %d years old\n”,“Bob”,age); int i 10; double f96.20; printf(“student number%3d,score%f\n”…...

【LeetCode-中等题】209. 长度最小的子数组

文章目录 题目方法一&#xff1a;滑动窗口&#xff1a;方法二&#xff1a; 题目 方法一&#xff1a;滑动窗口&#xff1a; 参考图解动画&#xff1a;长度最小的子数组 class Solution { //方法一:滑动窗口public int minSubArrayLen(int target, int[] nums) {int n nums.l…...

比较聚合模型实战文本匹配

引言 本文我们采用比较聚合模型来实现文本匹配任务。 数据准备 数据准备包括 构建词表(Vocabulary)构建数据集(Dataset) 本次用的是LCQMC通用领域问题匹配数据集&#xff0c;它已经分好了训练、验证和测试集。 我们通过pandas来加载一下。 import pandas as pdtrain_df …...

LA@二次型@标准化相关原理和方法

文章目录 标准化方法正交变换法&#x1f388;求矩阵的特征值求各特征值对应的线性无关特征向量组正交化各个向量组 配方法步骤例例 初等变换法原理总结初等变换法的步骤例 标准化方法 正交变换法&#x1f388; 二次型可标准化定理的证明过程给出使用二次型标准化的步骤 该方法…...

Git与IDEA: 解决`dev`分支切换问题及其背后原因 为何在IDEA中无法切换到`dev`分支?全面解析!

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f984; 博客首页——&#x1f405;&#x1f43e;猫头虎的博客&#x1f390; &#x1f433; 《面试题大全专栏》 &#x1f995; 文章图文…...

什么是JavaScript中的严格模式(strict mode)?应用场景是什么?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 严格模式&#xff08;Strict Mode&#xff09;&#xff1a;⭐ 使用场景⭐ 写在最后 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 记得点击上方或者右侧链接订阅本专栏哦 几何带你启航前端之旅 欢迎来到前端入门之旅&…...

红外特征吸收峰特征总结(主要基团的红外特征吸收峰)

特此记录 anlog 2023年9月11日...

网站后台登陆模板/网站广告制作

点击蓝字“角落的白板报”关注我哟加个“星标★”&#xff0c;好文必达&#xff01;推荐目录&#xff1a;https://t.cn/A6ApnczUWindows 的 Docker-desktop 是为在 Windows 10 上运行而设计的 Docker。适用于 Windows 的 Docker 桌面使用 Windows 原生的 Hyper-V 虚拟化和网络连…...

做短租类型的网站/关键词优化工具

在第一次使用TortoiseSVN从服务器CheckOut的时候&#xff0c;会要求输入用户名和密码&#xff0c;这时输入框下面有个选项是保存认证信息&#xff0c;如果选了这个选项&#xff0c;那么以后就不用每次都输入一遍用户名密码了。 不过&#xff0c;如果后来在服务器端修改了用户名…...

济南品牌网站建设/软文广告

本文来自CMU的博士&#xff0c;MIT的博士后&#xff0c;vision.ai的联合创始人Tomasz Malisiewicz的个人博客文章&#xff0c;阅读本文&#xff0c;你可以更好的理解计算机视觉是怎么一回事&#xff0c;同时对机器学习是如何随着时间缓慢发展的也有个直观的认识。 以下为正文&a…...

wordpress怎么添加文章/百度推广怎么看关键词排名

今天从同事那里发现个整理桌面的好东东---Fences&#xff0c;对于习惯把桌面当工作区的我来说&#xff0c;确实方便了许多&#xff0c;再也不用自己创建文件夹管理图标了 官网介绍 http://www.stardock.com/products/fences/ 免费下载 http://www.stardock.com/products/fences…...

遵义市建设厅网站/网站推广如何引流

python更新1.官网下载安装包&#xff0c;编译安装./configure --prefix/usr/local/pythonmake && make install2.修改旧的python2.7命令 mv /usr/bin/python /usr/bin/python2.7.5链接python3.4的命令 ln -s /usr/local/python/bin/python3.4 /usr/bin/python3.yum 指向…...

南平 网站建设/推广公司是做什么的

环境&#xff1a; 2020款MacBook Pro13.3 八核M1/8G/256G 问题描述&#xff1a; 公司Macbook Pro&#xff0c;换了好几位员工使用&#xff0c;他们走了&#xff0c;不知道谁的账户启用了激活锁&#xff0c;重置系统后开机要激活&#xff0c;忘了激活锁账户密码如何向苹果申请…...