当前位置: 首页 > news >正文

人工智能AI 全栈体系(一)

第一章 神经网络是如何实现的

这些年人工智能蓬勃发展,在语音识别、图像识别、自然语言处理等多个领域得到了很好的应用。推动这波人工智能浪潮的无疑是深度学习。所谓的深度学习实际上就是多层神经网络,至少到目前为止,深度学习基本上是用神经网络实现的。神经网络并不是什么新的概念,早在上个世纪40年代就开展了以感知机为代表的神经网络的研究,只是限于当时的客观条件,提出的模型比较简单,只有输入、输出两层,功能有限,连最简单的异或问题(XOR问题)都不能求解,神经网络的研究走向低潮。

到了80年代中期,随着BP算法的提出,神经网络再次引起研究热潮。当时被广泛使用的神经网络,在输入层和输出层之间引入了隐含层,不但能轻松求解异或问题,还被证明可以逼近任意连续函数。但限于计算能力和数据资源的不足,神经网络的研究再次陷入低潮。

一直对神经网络情有独钟的多伦多大学的辛顿教授,于2006年在《科学》上发表了一篇论文,提出了深度学习的概念,至此神经网络以深度学习的面貌再次出现在研究者的面前。但是深度学习并不是简单地重复以往的神经网络,而是针对以往神经网络研究中存在的问题,提出了一些解决方法,可以实现更深层次的神经网络,这也是深度学习一词的来源。

随着深度学习方法先后被应用到语音识别、图像识别中,并取得了传统方法不可比拟的性能,深度学习引起了人工智能研究的再次高潮。
请添加图片描述

一、数字识别

1. 引入例子

  • 下图是个数字3的图像,其中1代表有笔画的部分,0代表没有笔画的部分。假设想对0到9这十个数字图像进行识别,也就是说,如果任给一个数字图像,我们想让计算机识别出这个图像是数字几,我们应该如何做呢?
    请添加图片描述

2. 模式匹配

  • 一种简单的办法就是对每个数字构造一个模式,比如对数字3,我们这样构造模式:有笔画的部分用1表示,而没有笔画的部分,用-1表示,如图所示。当有一个待识别图像时,我们用待识别图像与该模式进行匹配,匹配的方法就是用图像和模式的对应位置数字相乘,然后再对相乘结果进行累加,累加的结果称为匹配值。为了方便表示,我们将模式一行一行展开用 w i w_i wi( i i i = 1, 2, …, n) 表示模式的每一个点。待识别图像也同样处理,用 x i x_i xi( i i i = 1, 2, …, n) 表示。这里假定模式和待识别图像的大小是一样的,由n个点组成。
    请添加图片描述
  • 如果模式与待识别图像中的笔画是一样的,就会得到一个比较大的匹配结果,如果有不一致的地方,比如模式中某个位置没有笔画,这部分在模式中为-1,而待识别图像中相应位置有笔画,这部分在待识别图像中为1,这样对应位置相乘就是-1,相当于对结果做了惩罚,会使得匹配结果变小。匹配结果越大说明待识别图像与模式越一致,否则差别就比较大。
  • 如图所示是8的图像。这两个数字的区别只是在最左边是否有笔画,当用8与3的模式匹配时,8的左边部分与3的模式的左边部分相乘时,会得到负值,这样匹配结果受到了惩罚,降低了匹配值。相反如果当3与8的模式匹配时,由于3的左边没有笔画值为0,与8的左边对应位置相乘得到的结果是0,也同样受到了惩罚,降低了匹配值。只有当待识别图像与模式笔画一致时,才会得到最大的匹配值。
  • 数字3、8分别与3的模式的匹配值各是多少?计算结果,3与3的模式的匹配值是143,而8与3的模式的匹配值是115。可见前者远大于后者。
    请添加图片描述

3. 存在的问题

  • 如果想识别一个数字是3还是8,就分别和这两个数字的模式进行匹配,看与哪个模式的匹配值大,就是哪个数字。
  • 如果识别0到9这10个数字,只要分别建造这10个数字的模式就可以了。对于一个待识别图像,分别与10个模式匹配,选取匹配值最大的作为识别结果就可以了。但是由于不同数字的笔画有多有少,比如1笔画就少,而8就比较多,所以识别结果的匹配值也会有大有小。

4. 使用 Sigmoid 函数

  • 我们可以对匹配值用一个称作sigmoid的函数进行变换,将匹配值变换到0和1之间。sigmoid函数如下式所示,通常用σ表示。

σ = 1 1 + e − x \sigma = \frac{1}{1 + e ^ {-x} } σ=1+ex1
请添加图片描述

  • 从图中可以看出,当x比较大时,sigmoid输出接近于1,而x比较小时(负数),sigmoid输出接近于0。经过sigmoid函数变换后的结果可以认作是待识别图像属于该数字的概率。

5. 增加偏置项

  • 但是像前面的3和8的匹配结果分别为143、115,把两个结果带入到sigmoid函数中,都接近于1了,并没有明显的区分。
  • sigmoid函数并不能直接这样用,而是要“平移”一下,加上一个适当的偏置b,使得加上偏置后,两个结果分别在sigmoid函数中心线的两边,来解决这个问题:
    请添加图片描述
    请添加图片描述
  • 比如这里我们让b=-129,这样处理后的sigmoid值分别是:
    • sigmoid(143-129)=0.999999
    • sigmoid(115-129)=0.000001
  • 这样区分的就非常清楚了,接近1的就是识别结果,而接近0的就不是。不同的数字模式具有不同的b值,这样才能解决前面提到的不同数字之间笔画有多有少的问题。
  • 这是一种简单的数字识别基本原理。这与神经网络有什么关系呢?
    请添加图片描述

6. 神经网络

  • 上面介绍的,其实就是一个简单的神经网络。这是一个可以识别3和8的神经网络,和前面介绍的一样, x 1 x_1 x1 x n x_n xn 表示待识别图像, w 3.1 w_{3.1} w3.1 w 3. n w_{3.n} w3.n w 8.1 w_{8.1} w8.1 w 8. n w_{8.n} w8.n 分别表示3的模式和8的模式,在图中可以看成是每条边的权重。如果用 y 3 y_3 y3 y 8 y_8 y8 分别表示识别为3或者8的概率的话,则这个示意图实际表示的和前面介绍的数字识别方法是完全一样的,只不过是换成了用网络的形式表达。
    请添加图片描述
  • 图中下边表示输入层,每个圆圈对应输入图像在位置 i i i 的值 x i x_i xi ,上边一层表示输出层,每一个圆圈代表了一个神经元,所有的神经元都采取同样的运算:输入的加权和,加上偏置,再经过sigmoid函数得到输出值。这样的一个神经网络,实际表示的是如下计算过程:
    请添加图片描述

7. 数字识别神经网络

  • 每个神经元对应的权重都代表了一种模式。比如在这个图中,一个神经元代表的是数字3的模式,另一个神经元代表的是数字8的模式。进一步如果在输出层补足了10个数字,就可以实现数字识别了。
    请添加图片描述
  • 要识别的数字不规整,怎么办?
  • 这个网络过于简单了,要想构造复杂一些的网络,可以有两个途径。比如一个数字可以有不同的写法,这样的话,同一个数字就可以构造多个不同的模式,只要匹配上一个模式,就可以认为是这个数字。这是一种横向的扩展。另外一个途径就是构造局部的模式。比如可以将一个数字划分为上下左右4个部分,每个部分是一个模式,多个模式组合在一起合成一个数字。不同的数字,也可以共享相同的局部模式。比如3和8在右上、右下部分模式可以是相同的,而区别在左上和左下的模式上。要实现这样的功能,需要在神经网络的输入层、输出层之间增加一层表示局部模式的神经元,这层神经元由于在神经网络的中间部分,所以被称为隐含层。输入层到隐含层的神经元之间都有带权重的连接,而隐含层到输出层之间也同样具有带权重的连接。隐含层的每个神经元,均表示了某种局部模式。这是一种纵向的扩展。

8. 神经网络的横向扩展 – 增加模式

请添加图片描述

9. 神经网络的纵向扩展 – 局部模式

请添加图片描述

10. 让神经网络更深 - 模式组合

请添加图片描述

11. 多层神经网络

  • 如果要刻画更细致的局部模式,可以通过增加隐含层的数量来刻画更细致的模式,每增加一层隐含层,模式就被刻画的更详细一些。这样就建立了一个深层的神经网络,越靠近输入层的神经元,刻画的模式越细致,体现的越是细微信息的特征;越是靠近输出层的神经元,刻画的模式越是体现了整体信息的特征。这样通过不同层次的神经元体现的是不同粒度的特征。每一层隐含层也可以横向扩展,在同一层中每增加一个神经元,就增加了一种与同层神经元相同粒度特征的模式。
    请添加图片描述
  • 神经网络越深越能刻画不同粒度特征的模式,而横向神经元越多,则越能表示不同的模式。但是当神经网络变得复杂后,所要表达的模式会非常多,如何构造各种不同粒度的模式呢?
  • 构造模式是非常难的事情,事实上我们也很难手工构造这些模式。在后面我们可以看到,这些模式,也就是神经网络的权重是可以通过样本训练得到的,也就是根据标注好的样本,神经网络会自动学习这些权值,也就是模式,从而实现数字识别。

12. 如何获得模式?

  • 模式通过神经元的连接权重表示
  • 通过训练样本,自动学习权重,也就是模式
  • 不是人工设计!
  • 学习到的模式是一种隐含表达,并不像举例的这样清晰

13. 总结

  • 神经元可以表示某种模式,不同层次的神经元可以表示不同粒度的特征,从输入层开始,越往上表示的特征粒度越大,从开始的细粒度特征,到中间层次的中粒度特征,再到最上层的全局特征,利用这些特征就可以实现对数字的识别。如果网络足够复杂,神经网络不仅可以实现数字识别,还可以实现更多的智能系统,比如人脸识别、图像识别、语音识别、机器翻译等。
  • 神经元实际上是模式的表达,不同的权重体现了不同的模式。权重与输入的加权和,即权重与对应的输入相乘再求和,实现的是一次输入与模式的匹配。该匹配结果可以通过sigmoid函数转换为匹配上的概率。概率值越大说明匹配度越高。
  • 一个神经网络可以由多层神经元构成,每个神经元表达了一种模式,越是靠近输入层的神经元表达的越是细粒度的特征,越是靠近输出层的神经元表达的越是粗粒度特征。同一层神经元越多,说明表达的相同粒度的模式越多,而神经网络层数越多,越能刻画不同粒度的特征。

相关文章:

人工智能AI 全栈体系(一)

第一章 神经网络是如何实现的 这些年人工智能蓬勃发展,在语音识别、图像识别、自然语言处理等多个领域得到了很好的应用。推动这波人工智能浪潮的无疑是深度学习。所谓的深度学习实际上就是多层神经网络,至少到目前为止,深度学习基本上是用神…...

权限、认证与授权

权限、认证与授权 1、权限概述 (1)什么是权限 权限管理,一般指根据系统设置的安全策略或者安全规则,用户可以访问而且只能访问自己被授权的资源,不多不少。权限管理几乎出现在任何系统里面,只要有用户和…...

JAVA 的四种访问权限

在Java编程中,访问权限是非常重要的概念,因为它可以保证代码的安全性和封装性。访问权限有四种,分别是public、protected、default和private。 private:如果一个类的方法或者变量被private修饰,那么这个类的方法或者变…...

【个人博客系统网站】注册与登录 · 加盐加密验密算法 · 上传头像

【JavaEE】进阶 个人博客系统(3) 文章目录 【JavaEE】进阶 个人博客系统(3)1. 加盐加密验密算法原理1.1 md5加密1.2 md5验密1.3 md5缺漏1.4 加盐加密1.5 后端的盐值拼接约定1.6 代码实现1.6.1 加密1.6.2 验密1.6.3 测试 2. 博客…...

[H5动画制作系列] Sprite及Text Demo

参考代码: sprite.js: var canvas, stage, container; canvas document.getElementById("mainView"); function init() {stage new createjs.Stage(canvas);createjs.Touch.enable(stage);var loader new createjs.LoadQueue(false);loader.addEventListener(&q…...

目标检测YOLO实战应用案例100讲-毫米波辐射图像去模糊重建与目标检测

目录 前言 毫米波辐射图像去模糊重建研究现状 基于传统算法的图像去模糊重建...

Android10 SystemUI系列(一)概述

一、前言 由于笔者之前负责过SystemUI,之前没有抽空把很多东西整理出来,趁着最近不太忙,就慢慢动手梳理一下,顺便把自己遇到的问题也整理一下,当然自己之前主要看的是android11 之后的源码。这次主要是Android10 的源码,当然原理大差不差,也算是自己沉淀一下了 二、Sy…...

SpringMVC的常用注解,参数传递以及页面跳转的使用

目录 slf4j 常用注解 RequestMapping RequestParam RequestBody PathVariable 参数传递 首先在pom.xml配置文件中导入SLF4J的依赖 基础类型String 复杂类型 RequestParam PathVariable RequestBody 增删改查 返回值 void返回值 String返回值 modelString …...

Java“牵手”易贝商品列表数据,关键词搜索易贝商品数据接口,易贝API申请指南

ebay商城是一个网上购物平台,售卖各类商品,包括服装、鞋类、家居用品、美妆产品、电子产品等。要获取ebay商品列表和商品详情页面数据,您可以通过开放平台的接口或者直接访问ebay商城的网页来获取商品详情信息。以下是两种常用方法的介绍&…...

java中HashMap如何根据value的值去获取key是多少

在Java中&#xff0c;HashMap是一种基于键值对存储数据的数据结构。HashMap并没有直接提供根据value获取key的方法。但你可以通过遍历HashMap的entrySet&#xff0c;找到对应的value&#xff0c;然后获取其对应的key。 以下是一个示例代码&#xff1a; public <K, V> K…...

Python|OpenCV-色彩空间之RGB轨迹调试板(5)

前言 本文是该专栏的第5篇,后面将持续分享OpenCV计算机视觉的干货知识,记得关注。 通常情况下,在处理图像需求的时候,需要掌握多个色彩空间的知识点。现实中,我们肉眼可以看到多种颜色,色彩是人的眼睛对于不同频率的光线的不同感受,其既是客观存在的,也是主观感知的。…...

安全生产:CVE-2020-11022/CVE-2020-11023漏洞解析

文章目录 一、前言二、漏洞原理三、修复方案3.1 升级jQuery3.2 1.x 升级至 3.x 需要考虑的问题3.2.1 table表格元素自动添加tbody3.2.2 方法变更 3.3 jquery migrate是什么 四、拓展阅读 一、前言 代码安全扫描阶段&#xff0c;前端资源审计发现jQuery版本过低导致生产系统存在…...

手写Spring:第17章-通过三级缓存解决循环依赖

文章目录 一、目标&#xff1a;通过三级缓存解决循环依赖二、设计&#xff1a;通过三级缓存解决循环依赖2.1 通过三级缓存解决循环依赖2.2 尝试使用一级缓存解决循环依赖 三、实现&#xff1a;通过三级缓存解决循环依赖3.1 工程结构3.2 通过三级缓存解决循环依赖类图3.3 设置三…...

C#使用proto

写多了go代码&#xff0c;被go mod tidy惯坏了&#xff0c;还以为全天下的都很好用呢&#xff0c;结果发现并不是这样。尤其是项目组的proto还是又封了个工具直接就能跑得&#xff0c;导致以为没那么复杂的事情变得复杂了起来。是有两套生成的规则&#xff0c;时间有点晚&#…...

Java基础知识面试题(一)(英语答案)

加油 前言Java中的基本数据类型包括以下几种:String和StringBuilder的区别是什么?什么是面向对象编程(OOP)?如何在Java中创建一个类?什么是继承?如何在Java中实现继承?什么是多态性?如何在Java中实现多态性?什么是封装和继承?什么是接口(Interface)?如何在Java中…...

基于csv数据建立线性回归模型并预测进行评估模型表现案例实现

一、数据处理 1.加载csv数据进行查看 import pandas as pd data pd.read_csv("generated_data.csv") print(data)2.将上述数据的x和y进行分离开&#xff0c;便于后续进行坐标建立 x data.loc[:,x] y data.loc[:,y] print(x,y)3.先使用matplotlib进行显示数据 …...

MySQL学习问题记录

文章目录 MySQL学习问题记录1、查询记录自动根据id排序&#xff1f; MySQL学习问题记录 1、查询记录自动根据id排序&#xff1f; step1&#xff1a;建表 表项信息&#xff1a; 写入数据顺序id为10 2 7 1。查寻时返回记录顺序为1 2 7 10&#xff1f; 更新一条数据后仍然按照…...

YMatrix 5.0 与天翼云完成产品兼容性认证

近日&#xff0c;北京四维纵横数据技术有限公司与天翼云宣布完成产品兼容性认证。经过双方严格的测试验证&#xff0c;超融合数据库 YMatrix 5.0 与天翼云兼容性良好&#xff0c;可基于天翼云稳定运行。 数据库系统作为基础软件的核心&#xff0c;自主可控势在必行。在此背景下…...

蓝桥杯官网练习题(旋转)

题目描述 图片旋转是对图片最简单的处理方式之一&#xff0c;在本题中&#xff0c;你需要对图片顺时针旋转 90 度。 我们用一个 nm 的二维数组来表示一个图片&#xff0c;例如下面给出一个 34 的 图片的例子&#xff1a; 1 3 5 7 9 8 7 6 3 5 9 7 这个图片顺时针旋转 90 …...

Jtti:Linux如何开机启动bootstrap

在Linux中&#xff0c;"bootstrap"通常不是一个单独的启动项&#xff0c;而是指引导过程的一部分。引导过程涉及到启动引导加载程序&#xff0c;加载内核&#xff0c;初始化系统并启动各种服务。启动过程中不会直接启动"bootstrap"&#xff0c;而是通过引导…...

springboot 百货中心供应链管理系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;百货中心供应链管理系统被用户普遍使用&#xff0c;为方…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互

物理引擎&#xff08;Physics Engine&#xff09; 物理引擎 是一种通过计算机模拟物理规律&#xff08;如力学、碰撞、重力、流体动力学等&#xff09;的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互&#xff0c;广泛应用于 游戏开发、动画制作、虚…...

Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?

Golang 面试经典题&#xff1a;map 的 key 可以是什么类型&#xff1f;哪些不可以&#xff1f; 在 Golang 的面试中&#xff0c;map 类型的使用是一个常见的考点&#xff0c;其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

电脑插入多块移动硬盘后经常出现卡顿和蓝屏

当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时&#xff0c;可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案&#xff1a; 1. 检查电源供电问题 问题原因&#xff1a;多块移动硬盘同时运行可能导致USB接口供电不足&#x…...

高等数学(下)题型笔记(八)空间解析几何与向量代数

目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...

Nginx server_name 配置说明

Nginx 是一个高性能的反向代理和负载均衡服务器&#xff0c;其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机&#xff08;Virtual Host&#xff09;。 1. 简介 Nginx 使用 server_name 指令来确定…...

Android15默认授权浮窗权限

我们经常有那种需求&#xff0c;客户需要定制的apk集成在ROM中&#xff0c;并且默认授予其【显示在其他应用的上层】权限&#xff0c;也就是我们常说的浮窗权限&#xff0c;那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...

ArcGIS Pro制作水平横向图例+多级标注

今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作&#xff1a;ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等&#xff08;ArcGIS出图图例8大技巧&#xff09;&#xff0c;那这次我们看看ArcGIS Pro如何更加快捷的操作。…...

2023赣州旅游投资集团

单选题 1.“不登高山&#xff0c;不知天之高也&#xff1b;不临深溪&#xff0c;不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...

基于SpringBoot在线拍卖系统的设计和实现

摘 要 随着社会的发展&#xff0c;社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线拍卖系统&#xff0c;主要的模块包括管理员&#xff1b;首页、个人中心、用户管理、商品类型管理、拍卖商品管理、历史竞拍管理、竞拍订单…...