当前位置: 首页 > news >正文

【码银送书第六期】《ChatGPT原理与实战:大型语言模型的算法、技术和私有化》

写在前面

2022年11月30日,ChatGPT模型问世后,立刻在全球范围内掀起了轩然大波。无论AI从业者还是非从业者,都在热议ChatGPT极具冲击力的交互体验和惊人的生成内容。这使得广大群众重新认识到人工智能的潜力和价值。对于AI从业者来说,ChatGPT模型成为一种思路的扩充,大模型不再是刷榜的玩具,所有人都认识到高质量数据的重要性,并坚信“有多少人工,就会有多少智能”。

ChatGPT模型效果过于优秀,在许多任务上,即使是零样本或少样本数据也可以达到SOTA效果,使得很多人转向大模型的研究。

不仅Google提出了对标ChatGPT的Bard模型,国内涌现出了许多中文大模型,如百度的“文心一言”、阿里的“通义千问”、商汤的“日日新”、知乎的“知海图AI”、清华智谱的“ChatGLM”、复旦的“MOSS”、Meta的“Llama1&Llama2”等等。

Alpaca模型问世之后,证明了70亿参数量的模型虽然达不到ChatGPT的效果,但已经极大程度上降低了大模型的算力成本,使得普通用户和一般企业也可以使用大模型。之前一直强调的数据问题,可以通过GPT-3.5或GPT-4接口来获取数据,并且数据质量也相当高。如果只需要基本的效果模型,数据是否再次精标已经不是那么重要了(当然,要获得更好的效果,则需要更精准的数据)。

1. Tansformer架构模型

预训练语言模型的本质是通过从海量数据中学到语言的通用表达,使得在下游子任务中可以获得更优异的结果。随着模型参数不断增加,很多预训练语言模型又被称为大型语言模型(Large Language Model,LLM)。不同人对于“大”的定义不同,很难说多少参数量的模型是大型语言模型,通常并不强行区分预训练语言模型和大型语言模型之间的差别。

图片

图注:来自《Attention Is All You Need》

预训练语言模型根据底层模型网络结构,一般分为仅Encoder架构模型、仅Decoder架构模型和Encoder-Decoder架构模型。其中,仅Encoder架构模型包括但不限于BERT、RoBerta、Ernie、SpanBert、AlBert等;仅Decoder架构模型包括但不限于GPT、CPM、PaLM、OPT、Bloom、Llama等;Encoder-Decoder架构模型包括但不限于Mass、Bart、T5等。

图片

图注:来自《Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond》

2. ChatGPT原理

ChatGPT训练的整体流程主要分为3个阶段,预训练与提示学习阶段,结果评价与奖励建模阶段以及强化学习自我进化阶段;3个阶段分工明确,实现了模型从模仿期、管教期、自主期的阶段转变。

图片

图注:来自url:https://openai.com/blog/chatgpt

在第一阶段的模仿期,模型将重点放在学习各项指令型任务中,这个阶段的模型没有自我判别意识,更多的是模仿人工行为的过程,通过不断学习人类标注结果让其行为本身具有一定的智能型。然而仅仅是模仿往往会让机器的学习行为变成邯郸学步。

在第二阶段的管教期,优化内容发生了方向性转变,将重点从教育机器答案内容改变为教育机器答案的好坏。如果第一阶段,重点希望机器利用输入X,模仿学习输出Y',并力求让Y'与原先标注的Y保持一致。那么,在第二阶段,重点则希望多个模型在针对X输出多个结果(Y1,Y2,Y3,Y4)时,可以自行判断多个结果的优劣情况。

当模型具备一定的判断能力时,认为该模型已经完成第二阶段的学习,可以进入第三阶段——自主期。在自主期的模型,需要通过左右互博的方式完成自我进化,即一方面自动生成多个输出结果,另一方面判断不同结果的优劣程度,并基于不同输出的效果模型差异评估,优化改进自动生成过程的模型参数,进而完成模型的自我强化学习。

总结来说,也可以将ChatGPT的3个阶段比喻为人成长的3个阶段,模仿期的目的是“知天理”,管教期的目的是“辨是非”,自主期的目的是“格万物”。

3. 提示学习与大模型能力的涌现

ChatGPT模型发布后,因其流畅的对话表达、极强的上下文存储、丰富的知识创作及其全面解决问题的能力而风靡全球,刷新了大众对人工智能的认知。提示学习(Prompt Learning)、上下文学习(In-Context Learning)、思维链(Chain of Thought,CoT)等概念也随之进入大众视野。市面上甚至出现了提示工程师这个职业,专门为指定任务编写提示模板。

提示学习被广大学者认为是自然语言处理在特征工程、深度学习、预训练+微调之后的第四范式。随着语言模型的参数不断增加,模型也涌现了上下文学习、思维链等能力,在不训练语言模型参数的前提下,仅通过几个演示示例就可以在很多自然语言处理任务上取得较好的成绩。

3.1 提示学习

提示学习是在原始输入文本上附加额外的提示(Prompt)信息作为新的输入,将下游的预测任务转化为语言模型任务,并将语言模型的预测结果转化为原本下游任务的预测结果。

以情感分析任务为例,原始任务是根据给定输入文本“我爱中国”,判断该段文本的情感极性。提示学习则是在原始输入文本“我爱中国”上增加额外的提示模板,例如:“这句话的情感为{mask}。”得到新的输入文本“我爱中国。这句话的情感为{mask}。”然后利用语言模型的掩码语言模型任务,针对{mask}标记进行预测,再将其预测出的Token映射到情感极性标签上,最终实现情感极性预测。

3.2 上下文学习

上下文学习可以看作提示学习的一种特殊情况,即演示示例看作提示学习中人工编写提示模板(离散型提示模板)的一部分,并且不进行模型参数的更新。

上下文学习的核心思想是通过类比来学习。对于一个情感分类任务来说,首先从已存在的情感分析样本库中抽取出部分演示示例,包含一些正向或负向的情感文本及对应标签;然后将其演示示例与待分析的情感文本进行拼接,送入到大型语言模型中;最终通过对演示示例的学习类比得出文本的情感极性。

图片

图注:来自《A Survey on In-context Learning》

这种学习方法也更加贴近人类学习后进行决策过程,通过观察别人对某些事件的处理方法,当自己遇到相同或类似事件时,可以轻松地并很好地解决。

3.3 思维链

大型语言模型横行的时代,它彻底改变了自然语言处理的模式。随着模型参数的增加,例如:情感分析、主题分类等系统-1任务(人类可以快速直观地完成的任务),即使是在少样本和零样本条件下均可以获得较好的效果。但对于系统-2任务(人类需要缓慢而深思熟虑的思考才能完成的任务),例如:逻辑推理、数学推理和常识推理等任务,即使模型参数增加到数千亿时,效果也并不理想,也就是简单地增加模型参数量并不能带来实质性的性能提升。

Google于2022年提出了思维链(Chain of thought,CoT)的概念,来提高大型语言模型执行各种推理任务的能力。思维链本质上是一种离散式提示模板,主旨是通过提示模板使得大型语言模型可以模仿人类思考的过程,给出逐步的推理依据,来推导出最终的答案,而每一步的推理依据组成的句子集合就是思维链的内容。

思维链其实是帮助大型语言模型将一个多步问题分解为多个可以被单独解答的中间步骤,而不是在一次向前传递中解决整个多跳问题。

图片

图注:来自《Chain-of-Thought Prompting Elicits Reasoning in Large Language Models》

4. 行业参考建议

4.1 拥抱变化

与其他领域不同,AIGC领域是当前变化最迅速的领域之一。以2023年3月13日至2023年3月19日这一周为例,我们经历了清华发布ChatGLM 6B开源模型、openAI将GPT4接口发布、百度文心一言举办发布会、微软推出Office同ChatGPT相结合的全新产品Copilot等一系列重大事件。

这些事件都会影响行业研究方向,并引发更多思考,例如,下一步技术路线是基于开源模型,还是从头预训练新模型,参数量应该设计多少?Copilot已经做好,办公插件AIGC的应用开发者如何应对?

即便如此,仍建议从业者拥抱变化,快速调整策略,借助前沿资源,以加速实现自身任务。

4.2  定位清晰

一定要明确自身细分赛道的目标,例如是做应用层还是底座优化层,是做C端市场还是B端市场,是做行业垂类应用还是通用工具软件。千万不要好高骛远,把握住风口,“切准蛋糕”。

定位清晰并不是指不撞南墙不回,更多的是明白自身目的及意义所在。

4.3  合规可控

AIGC最大的问题在于输出的不可控性,如果无法解决这个问题,它的发展将面临很大的瓶颈,无法在B端和C端市场广泛使用。在产品设计过程中,需要关注如何融合规则引擎、强化奖惩机制以及适当的人工介入。从业者应重点关注AIGC生成内容所涉及的版权、道德和法律风险。

4.4  经验沉淀

经验沉淀的目的是为了建立自身的壁垒。不要将所有的希望寄托于单个模型上,例如我们曾经将产品设计成纯文本格式,以便同ChatGPT无缝结合,但最新的GPT4已经支持多模态输入。我们不应气馁,而是要快速拥抱变化,并利用之前积累的经验(数据维度、Prompt维度、交互设计维度)快速完成产品升级,以更好地应对全新的场景和交互形态。

以上建议希望从业者加以参考。

虽然AIGC的浪潮下存在不少泡沫,但只要我们怀揣着拥抱变化的决心,始终明确我们要到达的远方,认真面对周围的风险危机,不断在实战中锻炼自身的能力,相信终有一天,会到达我们心中所向往的目的地。

本文内容摘编自《ChatGPT原理与实战:大型语言模型的算法技术和私有化》,经出版方授权发布。(ISBN:978-7-111-73303-4)

延伸阅读

图片

《ChatGPT原理与实战:大型语言模型的算法、技术和私有化》

刘聪 杜振东 涂铭 沈盛宇 著

BAT资深AI专家和大模型技术专家撰写

MOSS系统负责人邱锡鹏等多位专家鼎力推荐

揭开ChatGPT神秘技术黑盒!

推荐语:

BAT资深AI专家和大模型技术专家撰写,MOSS系统负责人邱锡鹏等多位专家鼎力推荐!系统梳理并深入解析ChatGPT的核心技术、算法实现、工作原理、训练方法,提供大量代码及注解。它山之石,可以攻玉,不仅教你如何实现大模型的迁移和私有化,而且手把手教你零基础搭建自己专属的ChatGPT!

  • 京东购买链接:ChatGPT原理与实战:大型语言模型的算法、技术和私有化

  • 本次送书三本
  • 活动时间:截止到2023-09-18
  • 参与方式:关注博主、并在此文章下面点赞、收藏并任意评论即可
  • 如果您特别喜欢本书,可以通过下方名片联系我,仅限一本,先到先得哦!

相关文章:

【码银送书第六期】《ChatGPT原理与实战:大型语言模型的算法、技术和私有化》

写在前面 2022年11月30日,ChatGPT模型问世后,立刻在全球范围内掀起了轩然大波。无论AI从业者还是非从业者,都在热议ChatGPT极具冲击力的交互体验和惊人的生成内容。这使得广大群众重新认识到人工智能的潜力和价值。对于AI从业者来说&#xf…...

redis 报错 Redis protected-mode 配置文件没有真正启动

(error) DENIED Redis is running in protected mode because protected mode is enabled Redis protected-mode 是3.2 之后加入的新特性,在Redis.conf的注释中,我们可以了解到,他的具体作用和启用条件 链接redis 时只能通过本地localhost …...

解决a标签内容中img标签和p标签垂直方向间隔太大的问题

现象如下: 对应的html结构: 解决办法:给a标签设置:display: inline-block和line-height属性。 然后问题解决: 具体原理如下(由chatgpt回答): display: inline-block 可以减少垂直方…...

如何选择靠谱的全景平台?VR全景加盟从哪方面对比?

VR全景行业经过近几年的发展,已经逐渐普及开来,线下各个行业都有实体商家开始引入VR全景去做营销宣传推广了。不少老板也意识到线上线下双渠道的重要性,而VR全景的存在就刚好满足各行各业的需求,从这一点不难看出,VR全…...

CentOS系统环境搭建(十八)——CentOS7安装Docker20.10.12和docker compose v2

centos系统环境搭建专栏🔗点击跳转 CentOS7安装Docker20.10.12和docker compose v2 关于Docker旧版本和docker compose1.0版本的安装可以看这一篇CentOS系统环境搭建(三)——Centos7安装Docker&Docker Compose。 1.卸载旧版本 卸载do…...

NebulaGrap入门介绍和集群安装部署

长风破浪八千里,落日晚霞不回头。 ——大宁。 NebulaGrap——分布式图数据库 官方文档: ​ NebulaGraph Database手册 ​ 官方文档 介绍 简介: ​ NebulaGraph 一款开源、分布式图数据库,擅长处理超大规模数据集。 Nebula …...

thinkphp5.0 composer 安装oss提示php版本异常

场景复现: 本地 phpstudy 环境,安装的有7.0到7.3三个版本,首先确认composer已经安装 composer安装阿里云oss的命令为:composer require aliyuncs/oss-sdk-php 运行报错: Problem 1- Root composer.json requires php…...

AList dokcer安装及百度网盘挂载

AList是开源的网盘管理工具。本文介绍如何通过docker安装AList并挂载百度网盘 1、AList安装 1.1、系统安装 通过docker命令进行安装,命令如下: docker run -d --restartalways -v /etc/alist:/opt/alist/data -p 5244:5244 --name"alist" xhofe/alist:…...

whereIn 遇到了最大限制,临时表处理方式

当使用whereIn 遇到了限制,比如whereIn target ID 已经超过了10万级别,但是又没办法join其他库表时,可以使用临时表的方式解决,临时表是以一种会话的方式存在,意味着你断开了mysql 这个临时会话会自动销毁。 为了创建…...

基于SSM的校园快递代取系统设计与实现

末尾获取源码 开发语言:Java Java开发工具:JDK1.8 后端框架:SSM 前端:采用JSP技术开发 数据库:MySQL5.7和Navicat管理工具结合 服务器:Tomcat8.5 开发软件:IDEA / Eclipse 是否Maven项目&#x…...

MySQL事务详细讲解

文章目录 什么是事务:1.事务有哪些特性2.并发事务会引起什么问题3.事务的隔离级别有哪些4.Read View在MVCC中如何工作Read View 有四个重要的字段使用 InnoDB 存储引擎的数据库表,它的聚簇索引记录中都包含下面两个隐藏列: 5.可重复读是怎么工作的6.读提…...

[linux] mmcv-full 安装的时候 Building wheel 卡住

(已解决)FileNotFoundError: [Errno 2] No such file or directory: ‘:/usr/local/cuda-11.8/bin/nvcc‘_鳗小鱼的博客-CSDN博客 安装mmcv一直卡在建车轮_梦想成为大佬的王老八的博客-CSDN博客 pip install -U openmim mim install mmcv...

Python怎么实现更高效的数据结构和算法? - 易智编译EaseEditing

要实现更高效的数据结构和算法,你可以考虑以下几个方面的优化: 选择合适的数据结构: 选择最适合你问题的数据结构至关重要。例如,如果需要频繁插入和删除操作,可能链表比数组更合适。如果需要高效查找操作&#xff0…...

03-zookeeper节点动态上下线案例

服务器动态上下线监听案例 需求 在分布式系统中,主节点可以有多台,可以动态上下线,任意一台客户端都能实时感知到主节点服务器的上下线。 需求分析 客户端能实时洞察到服务器上下线的变化 基本流程: ​ 1.服务端启动时去注册…...

如何使用TensorFlow完成线性回归

线性回归是一种简单的预测模型,它试图通过线性关系来预测目标变量。在TensorFlow中,我们可以使用tf.GradientTape来跟踪我们的模型参数的梯度,然后用这个信息来优化我们的模型参数。 以下是一个简单的线性回归的例子: pythonimpo…...

@controller和@RestController的区别

//controller和RestController的区别:RestController的返回值就是结果被输出在浏览器 //controller的返回值会到resources的templates下找 返回值".html" 页面 1.controller 简单的来说,当我们的返回值需要跳转大另一个页面时候,我们就会使…...

GeoNet: Unsupervised Learning of Dense Depth, Optical Flow and Camera Pose 论文阅读

论文信息 题目:GeoNet: Unsupervised Learning of Dense Depth, Optical Flow and Camera Pose 作者:Zhichao Yin and Jianping Shi 来源:CVPR 时间:2018 Abstract 我们提出了 GeoNet,这是一种联合无监督学习框架&a…...

蓝桥杯官网填空题(振兴中华)

题目描述 本题为填空题,只需要算出结果后,在代码中使用输出语句将所填结果输出即可。 小明参加了学校的趣味运动会,其中的一个项目是:跳格子。 地上画着一些格子,每个格子里写一个字,如下所示&#xff1…...

node基础之七:Mongodb 数据库

下载地址:https://www.mongodb.com/try/download/community v:5.0.20 platform:window package:zip 复制到 c 盘/Programs Files c 盘创建 data/db 文件夹 默认存放数据地址 在 bin 目录下启动数据库 mongod, 客户端连接数据库…...

基于Python和mysql开发的智慧校园答题考试系统(源码+数据库+程序配置说明书+程序使用说明书)

一、项目简介 本项目是一套基于Python和mysql开发的智慧校园答题考试系统,主要针对计算机相关专业的正在做毕设的学生与需要项目实战练习的Python学习者。 包含:项目源码、项目文档、数据库脚本等,该项目附带全部源码可作为毕设使用。 项目都…...

OPPO/真我手机ColorOS13系统解账户锁-移除手机密码图案锁方法

在搞机之前,请确定自己的手机不是非法获取,本文只讲叙ColorOS13系统解锁方法,仅为个人测试研究出来的经验,未对官方系统进行任何修改。只推荐专业维修师傅从维修的角度进行解锁,不推荐个人用户对非自己的手机进行非法破…...

阿里云大数据实战记录9:MaxCompute RAM 用户与授权

文章目录 问题来源:maxcompute 管理员无法访问敏感列?主线问题:如何提高用户等级衍生问题1:怎么知道自己的等级和表单的等级衍生问题2:为什么 dataworks 空间管理员也没有设置等级的权限?衍生问题3&#xf…...

JavaScript基础07——变量拓展-数组

哈喽,大家好,我是雷工! 每天打卡学习一点点,今天继续学习JavaScript基础知识,以下是学习笔记。 一、数组的基本介绍 数组 (Array)——一种将一组数据存储在单个变量名下的优雅方式。 数组的作用和变量一样…...

go-zerogo web集成redis实战

前言 上一篇:go-zero&go web集成JWT和cobra命令行工具实战 从零开始基于go-zero搭建go web项目实战-03集成redis实战 源码仓库地址 源码 https://gitee.com/li_zheng/treasure-box golang redis 客户端 Go-Redis 地址: GitHub: https://github.…...

油猴浏览器(安卓)

油猴浏览器页面设计非常简约,在主页上还为小伙伴们推荐了很多的常用书签,像油猴脚本,常用导航,新闻,热搜类的,快递查询等等,可以设置快捷访问,把常用到的一些网站设置在主页上。 浏览…...

Redis 6.0多线程模型比单线程优化在哪里了

推荐阅读 项目实战:AI文本 OCR识别最佳实践 AI Gamma一键生成PPT工具直达链接 玩转cloud Studio 在线编码神器 玩转 GPU AI绘画、AI讲话、翻译,GPU点亮AI想象空间 资源分享 史上最全文档AI绘画stablediffusion资料分享 AI绘画关于SD,MJ,GPT,SDXL百科全书 AI绘画 stable…...

[hello,world]这个如何将[ ] 去掉

[hello,world]这个如何将[ ] 去掉? 你可以使用编程语言中的字符串处理函数来去掉方括号。以下是一个示例代码,使用Python的strip()函数去掉方括号: text "[hello,world]" text text.strip("[]") print(text)输出为&a…...

机器学习_个人笔记_周志华(更新中......)

第1章 绪论 1.1 引言 形成优秀的心理表征,自然能成为领域内的专家。 系统1 & 系统2。 机器学习:致力于研究如何通过计算的手段,利用经验来改善系统自身的性能。主要研究计算机从数据中产生model的算法,即“learning algori…...

嵌入式Linux驱动开发(LCD屏幕专题)(二)

一、结合APP分析LCD驱动程序 1、open app: open("/dev/fb0", ...) 主设备号: 29, 次设备号: 0 -------------------------------------------------------------- kernel:fb_open // fbmem.cstruct fb_info *info;info get_fb_info(fbidx);if (info->fbop…...

React的jsx的用法

React是一个流行的JavaScript库,用于构建用户界面。它使用一种名为JSX的语法扩展来描述组件的结构和样式。JSX是React的核心语言之一,它允许开发人员在JavaScript中编写HTML,从而使代码更加简洁和易于阅读。 JSX是一种语法扩展,它…...

免费网站重生做军嫂/网站开发流程有哪几个阶段

前言:C#语言是由微软公司开发面向大众的一款软件开发语言。 1.c语音的输出语句为Console.Write();和Console.WriteLine(); 两者区别为后者为换行输出,前者不换行。 2.在C#语言中一般是使用vs开发工具,目前最高版本为2015版本, 他的…...

网站建设服务开税率多少的票/搜索关键词怎么让排名靠前

考虑以下代码: int x; void someFunc() {double x;std::cin >> x; };读取数据的语句涉的是局部变量x,而不是全局变量x,因为内层作用域的名称会遮掩外围作用域的名称。 考虑以下的类: class Base { private:int x; public:virtual vo…...

dw 做网站模板/搜索排名影响因素

1854: [Scoi2010]游戏 Time Limit: 5 Sec Memory Limit: 162 MBSubmit: 5258 Solved: 2098[Submit][Status][Discuss]Description lxhgww最近迷上了一款游戏,在游戏里,他拥有很多的装备,每种装备都有2个属性,这些属性的值用[1,1…...

wordpress 数据库连接文件/seo技术培训宁波

新建目录或文件夹。 语法 MkDir 路径 所需的_路径_参数是一个字符串表达式,标识的目录或文件夹创建。 _路径_可以包含驱动器。 如果未指定驱动器, MkDir当前的驱动器上创建新目录或文件夹。 例子 创建当前路径下的Test文件夹 1 Sub MkdirTest() 2 M…...

网站建设费用初步预算/页面优化

目录一、准备 Linux 系统二、安装 Xshell 与 Xfpt三、配置服务器3.1 创建普通用户3.2 安装 SSH3.3 安装 Java 环境3.4 安装 Hadoop3.5 配置 Hadoop四、总结五、参考资料说明:本篇文字主要在 Linux 系统上搭建 Hadoop ,采用伪分布式的形式搭建&#xff0c…...

网站建站流程图/最新军事新闻 今日 最新消息

(一) 函数介绍 1. 函数:是组织好的,可重复使用的,用来实现特定功能的代码段。 eg. len():实现统计长度这一特定功能的代码段。 2. 函数好处: * 将功能封装在函数内,可随时随地重复…...