【学习笔记】「2020-2021 集训队作业」Communication Network
有点难😅
发现容斥系数设计的非常巧妙🤔
设 f ( i ) f(i) f(i)表示恰好有 i i i条边相同的方案数, g ( i ) g(i) g(i)表示至少有 i i i条边相同的方案数
根据二项式反演, g ( i ) = ∑ j ≥ i ( j i ) f ( j ) ⇒ f ( i ) = ∑ j ≥ i ( − 1 ) j − i ( j i ) g j g(i)=\sum_{j\ge i}\binom{j}{i}f(j)\Rightarrow f(i)=\sum_{j\ge i}(-1)^{j-i}\binom{j}{i}g_j g(i)=∑j≥i(ij)f(j)⇒f(i)=∑j≥i(−1)j−i(ij)gj
这个式子成立是因为 [ i = j ] = ∑ j ≤ k ≤ i ( − 1 ) k − j ( i k ) ( k j ) [i=j]=\sum_{j\le k\le i}(-1)^{k-j}\binom{i}{k}\binom{k}{j} [i=j]=∑j≤k≤i(−1)k−j(ki)(jk),点这里
用 g ( i ) g(i) g(i)进行替换,答案是 ∑ g ( j ) ⋅ ( ∑ i ≤ j i ⋅ 2 i ⋅ ( − 1 ) j − i ⋅ ( j i ) ) \sum g(j)\cdot (\sum_{i\le j}i\cdot 2^i\cdot (-1)^{j-i}\cdot \binom{j}{i}) ∑g(j)⋅(∑i≤ji⋅2i⋅(−1)j−i⋅(ij))
发现后面那一坨就等于 2 j 2j 2j。又根据 prufer \text{prufer} prufer序列,对于 k k k个连通块的生成树的方案数为 n k − 2 ∏ s i n^{k-2}\prod s_i nk−2∏si,可以转化为在每个连通块中钦定选一个点以及在选的边中钦定选一条边的方案数,这样就做完了。
类似的题目:CF1842G Tenzing and Random Operations
复杂度 O ( n ) O(n) O(n)。
#include<bits/stdc++.h>
#define ll long long
#define pb push_back
#define fi first
#define se second
#define db double
#define ull unsigned long long
#define inf 0x3f3f3f3f
using namespace std;
const int mod=998244353;
const int N=2e6+5;
int n;
ll dp[N][2][2];
vector<int>G[N];
ll fpow(ll x,ll y=mod-2){ll z(1);for(;y;y>>=1){if(y&1)z=z*x%mod;x=x*x%mod;}return z;
}
void add(ll &x,ll y){x=(x+y)%mod;
}
void dfs(int u,int topf){dp[u][0][0]=dp[u][1][0]=1;for(auto v:G[u]){if(v==topf)continue;dfs(v,u),memset(dp[0],0,sizeof dp[0]);for(int i=0;i<2;i++){for(int j=0;j<2;j++){for(int k=0;k<2;k++){for(int l=0;l<2;l++){if(j==1&&l==1)continue;if(i==0||k==0){add(dp[0][i+k][j+l],dp[u][i][j]*dp[v][k][l]);if(j==0&&l==0)add(dp[0][i+k][1],dp[u][i][j]*dp[v][k][l]);}if(k==1){add(dp[0][i][j+l],dp[u][i][j]*dp[v][k][l]%mod*n);}}}}}memcpy(dp[u],dp[0],sizeof dp[0]);}
}
int main(){ios::sync_with_stdio(false);cin.tie(0),cout.tie(0);cin>>n;for(int i=1;i<n;i++){int x,y;cin>>x>>y;G[x].pb(y),G[y].pb(x);}dfs(1,0)ll res=dp[1][1][1]*fpow(n,mod-2)%mod*2%mod;cout<<(res+mod)%mod;
}
相关文章:
【学习笔记】「2020-2021 集训队作业」Communication Network
有点难😅 发现容斥系数设计的非常巧妙🤔 设 f ( i ) f(i) f(i)表示恰好有 i i i条边相同的方案数, g ( i ) g(i) g(i)表示至少有 i i i条边相同的方案数 根据二项式反演, g ( i ) ∑ j ≥ i ( j i ) f ( j ) ⇒ f ( i ) ∑ j…...
文章参考链接
文章参考: 前端 echsrt横轴文字过长,…展示【link】js数组去重【link】js数据是String去重【link】js数据是对象去重【link】小程序使用wxml-to-canvas【link】vantui【link】微信小程序使用vantui组件【link】【link】微信小程序,选项卡页面…...

SQLI-labs-第七关
知识点:单引号()加括号闭合错误的布尔盲注 思路: 寻找注入点 我们首先看一下正常的回显,并没有显示出什么明显的信息 输入?id1 发现报错 输入?id1 -- 还是报错,说明SQL语句的语法错误可能不是单引号闭合…...

腾讯云轻量2核4G5M服务器_CPU内存_流量_带宽_系统盘
腾讯云轻量2核4G5M服务器:CPU内存流量带宽系统盘性能测评:轻量应用服务器2核4G5M带宽,免费500GB月流量,60GB系统盘SSD盘,5M带宽下载速度可达640KB/秒,流量超额按照0.8元每GB支付流量费,轻量2核4…...

从零开始搭建Apache服务器并使用内网穿透技术实现公网访问
Apache服务安装配置与结合内网穿透实现公网访问 文章目录 Apache服务安装配置与结合内网穿透实现公网访问前言1.Apache服务安装配置1.1 进入官网下载安装包1.2 Apache服务配置 2.安装cpolar内网穿透2.1 注册cpolar账号2.2 下载cpolar客户端 3. 获取远程桌面公网地址3.1 登录cpo…...
unordered_map和unordered_set的使用
前言 在C98中,STL提供了底层为红黑树的结构的一系列关联式容器,在查询时效率可以达到logN,即使最差的情况下需要比较红黑树的高度次,当树中的节点较多时,查询的效率也不是很理想,最好的查询是,进…...

javascript【格式化时间日期】
javascript【格式化时间日期】 操作: (1) 日期格式化代码 /*** 日期格式化函数<br/>* 调用格式:需要使用日期对象调用* <p> new Date().Format("yyyy/MM/dd HH:mm:ss"); </p>* param fmt 日期格式* returns {*} 返回格式化…...
CCC数字钥匙设计【NFC】--什么是AID?
1、NFC中的AID是什么? AID,英文全称为Application Identifier,这是NFC技术中的概念,AID用于唯一标识一个应用。 NFC应用的AID相关操作,包括注册和删除应用的AID、查询应用是否是指定AID的默认应用、获取应用的AID等 …...
变压器耐压试验电压及电源容量的计算
被试变压器的额定电压为(11081. 25%) /10. 5kV, 联接组标号为 YNd11。 试验时高压分接开关置于第 1 分接位置, 即高压侧电压为 126kV, 高、 低压电压比 K1126/(√310. 5) 6. 93。 现以 A 相试验…...
uniapp实现底部弹出菜单选择
其实uniapp有内置的组件,不用自己去实现,类似于这样: uni.showActionSheet({itemList: [菜单一, 菜单二, 菜单三],success: function (res) {console.log(选中了第${res.tapIndex 1}个菜单);},fail: function (res) {console.log(res.errMs…...

14. 线性代数 - 线性方程组
文章目录 线性方程组矩阵行列式全排列和逆序数N阶行列式(非)齐次线性方程Hi,大家好。我是茶桁。 结束了「微积分」部分的学习之后我们稍作休整,今天正式开始另外一部分:「线性代数」的学习。小伙伴们放松完回来要开始紧张起来了。 我们之前说过,不管是哪一个工程学科,根…...

C++QT day4
仿照string类,完成myString类 #include <iostream> #include <cstring> using namespace std; class myString {private:char *str; //记录c风格的字符串int size; //记录字符串的实际长度public://无参构造myString():size(10){s…...
Python中的 if __name__ ==‘main‘
你编写的程序迟早需要创建目录以便在其中存储数据。 os 和 pathlib 包含了创建目录的函数。我们将会考虑如下方法: | 方法 | 描述 | | -------------------- | -------------------------- | | os.mkdir() | 创建单个子目录 | | os.makedirs() | 创建多个目录&…...

github 创建自己的分支 并下载代码
github创建自己的分支 并下载代码 目录概述需求: 设计思路实现思路分析1.进入到master分支,git checkout master;2.master-slave的个人远程仓库3.爬虫调度器4.建立本地分支与个人远程分支之间的联系5.master 拓展实现 参考资料和推荐阅读 Survive by day…...

算法:贪心---跳一跳
1、题目: 给你一个非负整数数组 nums ,你最初位于数组的 第一个下标 。数组中的每个元素代表你在该位置可以跳跃的最大长度。 判断你是否能够到达最后一个下标,如果可以,返回 true ;否则,返回 false 。 2…...

机器学习入门教学——梯度下降、梯度上升
1、简介 梯度表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(梯度的方向)变化最快,变化率(梯度的模)最大,可理解为导数。梯度上升和梯度下降是优化算法中常用的…...

BUUCTF Reverse/[羊城杯 2020]login(python程序)
查看信息,python文件 动调了一下,该程序创建了一个线程来读入数据,而这个线程的代码应该是放在内存中直接执行的,本地看不到代码,很蛋疼 查了下可以用PyInstaller Extractor工具来解包,可以参考这个Python解包及反编译…...

indexDB localForage
一、前言 前端本地化存储算是一个老生常谈的话题了,我们对于 cookies、Web Storage(sessionStorage、localStorage)的使用已经非常熟悉,在面试与实际操作之中也会经常遇到相关的问题,但这些本地化存储的方式还存在一些…...
Spring Boot开发时Java对象和Json对象互转
🙈作者简介:练习时长两年半的Java up主 🙉个人主页:程序员老茶 🙊 ps:点赞👍是免费的,却可以让写博客的作者开兴好久好久😎 📚系列专栏:Java全栈,…...

C++ 多态
引例: #include<iostream> using namespace std; class Animal { public:void speak(){cout<<"动物在说话"<<endl;} }; class Cat:public Animal { public:void speak(){cout<<"小猫在说话"<<endl;} }; void Do…...

深度学习在微纳光子学中的应用
深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

如何在看板中体现优先级变化
在看板中有效体现优先级变化的关键措施包括:采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中,设置任务排序规则尤其重要,因为它让看板视觉上直观地体…...

Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)
概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...
macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用
文章目录 问题现象问题原因解决办法 问题现象 macOS启动台(Launchpad)多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显,都是Google家的办公全家桶。这些应用并不是通过独立安装的…...
Robots.txt 文件
什么是robots.txt? robots.txt 是一个位于网站根目录下的文本文件(如:https://example.com/robots.txt),它用于指导网络爬虫(如搜索引擎的蜘蛛程序)如何抓取该网站的内容。这个文件遵循 Robots…...

k8s业务程序联调工具-KtConnect
概述 原理 工具作用是建立了一个从本地到集群的单向VPN,根据VPN原理,打通两个内网必然需要借助一个公共中继节点,ktconnect工具巧妙的利用k8s原生的portforward能力,简化了建立连接的过程,apiserver间接起到了中继节…...
实现弹窗随键盘上移居中
实现弹窗随键盘上移的核心思路 在Android中,可以通过监听键盘的显示和隐藏事件,动态调整弹窗的位置。关键点在于获取键盘高度,并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...

C/C++ 中附加包含目录、附加库目录与附加依赖项详解
在 C/C 编程的编译和链接过程中,附加包含目录、附加库目录和附加依赖项是三个至关重要的设置,它们相互配合,确保程序能够正确引用外部资源并顺利构建。虽然在学习过程中,这些概念容易让人混淆,但深入理解它们的作用和联…...

零知开源——STM32F103RBT6驱动 ICM20948 九轴传感器及 vofa + 上位机可视化教程
STM32F1 本教程使用零知标准板(STM32F103RBT6)通过I2C驱动ICM20948九轴传感器,实现姿态解算,并通过串口将数据实时发送至VOFA上位机进行3D可视化。代码基于开源库修改优化,适合嵌入式及物联网开发者。在基础驱动上新增…...