【学习笔记】「2020-2021 集训队作业」Communication Network
有点难😅
发现容斥系数设计的非常巧妙🤔
设 f ( i ) f(i) f(i)表示恰好有 i i i条边相同的方案数, g ( i ) g(i) g(i)表示至少有 i i i条边相同的方案数
根据二项式反演, g ( i ) = ∑ j ≥ i ( j i ) f ( j ) ⇒ f ( i ) = ∑ j ≥ i ( − 1 ) j − i ( j i ) g j g(i)=\sum_{j\ge i}\binom{j}{i}f(j)\Rightarrow f(i)=\sum_{j\ge i}(-1)^{j-i}\binom{j}{i}g_j g(i)=∑j≥i(ij)f(j)⇒f(i)=∑j≥i(−1)j−i(ij)gj
这个式子成立是因为 [ i = j ] = ∑ j ≤ k ≤ i ( − 1 ) k − j ( i k ) ( k j ) [i=j]=\sum_{j\le k\le i}(-1)^{k-j}\binom{i}{k}\binom{k}{j} [i=j]=∑j≤k≤i(−1)k−j(ki)(jk),点这里
用 g ( i ) g(i) g(i)进行替换,答案是 ∑ g ( j ) ⋅ ( ∑ i ≤ j i ⋅ 2 i ⋅ ( − 1 ) j − i ⋅ ( j i ) ) \sum g(j)\cdot (\sum_{i\le j}i\cdot 2^i\cdot (-1)^{j-i}\cdot \binom{j}{i}) ∑g(j)⋅(∑i≤ji⋅2i⋅(−1)j−i⋅(ij))
发现后面那一坨就等于 2 j 2j 2j。又根据 prufer \text{prufer} prufer序列,对于 k k k个连通块的生成树的方案数为 n k − 2 ∏ s i n^{k-2}\prod s_i nk−2∏si,可以转化为在每个连通块中钦定选一个点以及在选的边中钦定选一条边的方案数,这样就做完了。
类似的题目:CF1842G Tenzing and Random Operations
复杂度 O ( n ) O(n) O(n)。
#include<bits/stdc++.h>
#define ll long long
#define pb push_back
#define fi first
#define se second
#define db double
#define ull unsigned long long
#define inf 0x3f3f3f3f
using namespace std;
const int mod=998244353;
const int N=2e6+5;
int n;
ll dp[N][2][2];
vector<int>G[N];
ll fpow(ll x,ll y=mod-2){ll z(1);for(;y;y>>=1){if(y&1)z=z*x%mod;x=x*x%mod;}return z;
}
void add(ll &x,ll y){x=(x+y)%mod;
}
void dfs(int u,int topf){dp[u][0][0]=dp[u][1][0]=1;for(auto v:G[u]){if(v==topf)continue;dfs(v,u),memset(dp[0],0,sizeof dp[0]);for(int i=0;i<2;i++){for(int j=0;j<2;j++){for(int k=0;k<2;k++){for(int l=0;l<2;l++){if(j==1&&l==1)continue;if(i==0||k==0){add(dp[0][i+k][j+l],dp[u][i][j]*dp[v][k][l]);if(j==0&&l==0)add(dp[0][i+k][1],dp[u][i][j]*dp[v][k][l]);}if(k==1){add(dp[0][i][j+l],dp[u][i][j]*dp[v][k][l]%mod*n);}}}}}memcpy(dp[u],dp[0],sizeof dp[0]);}
}
int main(){ios::sync_with_stdio(false);cin.tie(0),cout.tie(0);cin>>n;for(int i=1;i<n;i++){int x,y;cin>>x>>y;G[x].pb(y),G[y].pb(x);}dfs(1,0)ll res=dp[1][1][1]*fpow(n,mod-2)%mod*2%mod;cout<<(res+mod)%mod;
}
相关文章:
【学习笔记】「2020-2021 集训队作业」Communication Network
有点难😅 发现容斥系数设计的非常巧妙🤔 设 f ( i ) f(i) f(i)表示恰好有 i i i条边相同的方案数, g ( i ) g(i) g(i)表示至少有 i i i条边相同的方案数 根据二项式反演, g ( i ) ∑ j ≥ i ( j i ) f ( j ) ⇒ f ( i ) ∑ j…...
文章参考链接
文章参考: 前端 echsrt横轴文字过长,…展示【link】js数组去重【link】js数据是String去重【link】js数据是对象去重【link】小程序使用wxml-to-canvas【link】vantui【link】微信小程序使用vantui组件【link】【link】微信小程序,选项卡页面…...
SQLI-labs-第七关
知识点:单引号()加括号闭合错误的布尔盲注 思路: 寻找注入点 我们首先看一下正常的回显,并没有显示出什么明显的信息 输入?id1 发现报错 输入?id1 -- 还是报错,说明SQL语句的语法错误可能不是单引号闭合…...
腾讯云轻量2核4G5M服务器_CPU内存_流量_带宽_系统盘
腾讯云轻量2核4G5M服务器:CPU内存流量带宽系统盘性能测评:轻量应用服务器2核4G5M带宽,免费500GB月流量,60GB系统盘SSD盘,5M带宽下载速度可达640KB/秒,流量超额按照0.8元每GB支付流量费,轻量2核4…...
从零开始搭建Apache服务器并使用内网穿透技术实现公网访问
Apache服务安装配置与结合内网穿透实现公网访问 文章目录 Apache服务安装配置与结合内网穿透实现公网访问前言1.Apache服务安装配置1.1 进入官网下载安装包1.2 Apache服务配置 2.安装cpolar内网穿透2.1 注册cpolar账号2.2 下载cpolar客户端 3. 获取远程桌面公网地址3.1 登录cpo…...
unordered_map和unordered_set的使用
前言 在C98中,STL提供了底层为红黑树的结构的一系列关联式容器,在查询时效率可以达到logN,即使最差的情况下需要比较红黑树的高度次,当树中的节点较多时,查询的效率也不是很理想,最好的查询是,进…...
javascript【格式化时间日期】
javascript【格式化时间日期】 操作: (1) 日期格式化代码 /*** 日期格式化函数<br/>* 调用格式:需要使用日期对象调用* <p> new Date().Format("yyyy/MM/dd HH:mm:ss"); </p>* param fmt 日期格式* returns {*} 返回格式化…...
CCC数字钥匙设计【NFC】--什么是AID?
1、NFC中的AID是什么? AID,英文全称为Application Identifier,这是NFC技术中的概念,AID用于唯一标识一个应用。 NFC应用的AID相关操作,包括注册和删除应用的AID、查询应用是否是指定AID的默认应用、获取应用的AID等 …...
变压器耐压试验电压及电源容量的计算
被试变压器的额定电压为(11081. 25%) /10. 5kV, 联接组标号为 YNd11。 试验时高压分接开关置于第 1 分接位置, 即高压侧电压为 126kV, 高、 低压电压比 K1126/(√310. 5) 6. 93。 现以 A 相试验…...
uniapp实现底部弹出菜单选择
其实uniapp有内置的组件,不用自己去实现,类似于这样: uni.showActionSheet({itemList: [菜单一, 菜单二, 菜单三],success: function (res) {console.log(选中了第${res.tapIndex 1}个菜单);},fail: function (res) {console.log(res.errMs…...
14. 线性代数 - 线性方程组
文章目录 线性方程组矩阵行列式全排列和逆序数N阶行列式(非)齐次线性方程Hi,大家好。我是茶桁。 结束了「微积分」部分的学习之后我们稍作休整,今天正式开始另外一部分:「线性代数」的学习。小伙伴们放松完回来要开始紧张起来了。 我们之前说过,不管是哪一个工程学科,根…...
C++QT day4
仿照string类,完成myString类 #include <iostream> #include <cstring> using namespace std; class myString {private:char *str; //记录c风格的字符串int size; //记录字符串的实际长度public://无参构造myString():size(10){s…...
Python中的 if __name__ ==‘main‘
你编写的程序迟早需要创建目录以便在其中存储数据。 os 和 pathlib 包含了创建目录的函数。我们将会考虑如下方法: | 方法 | 描述 | | -------------------- | -------------------------- | | os.mkdir() | 创建单个子目录 | | os.makedirs() | 创建多个目录&…...
github 创建自己的分支 并下载代码
github创建自己的分支 并下载代码 目录概述需求: 设计思路实现思路分析1.进入到master分支,git checkout master;2.master-slave的个人远程仓库3.爬虫调度器4.建立本地分支与个人远程分支之间的联系5.master 拓展实现 参考资料和推荐阅读 Survive by day…...
算法:贪心---跳一跳
1、题目: 给你一个非负整数数组 nums ,你最初位于数组的 第一个下标 。数组中的每个元素代表你在该位置可以跳跃的最大长度。 判断你是否能够到达最后一个下标,如果可以,返回 true ;否则,返回 false 。 2…...
机器学习入门教学——梯度下降、梯度上升
1、简介 梯度表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(梯度的方向)变化最快,变化率(梯度的模)最大,可理解为导数。梯度上升和梯度下降是优化算法中常用的…...
BUUCTF Reverse/[羊城杯 2020]login(python程序)
查看信息,python文件 动调了一下,该程序创建了一个线程来读入数据,而这个线程的代码应该是放在内存中直接执行的,本地看不到代码,很蛋疼 查了下可以用PyInstaller Extractor工具来解包,可以参考这个Python解包及反编译…...
indexDB localForage
一、前言 前端本地化存储算是一个老生常谈的话题了,我们对于 cookies、Web Storage(sessionStorage、localStorage)的使用已经非常熟悉,在面试与实际操作之中也会经常遇到相关的问题,但这些本地化存储的方式还存在一些…...
Spring Boot开发时Java对象和Json对象互转
🙈作者简介:练习时长两年半的Java up主 🙉个人主页:程序员老茶 🙊 ps:点赞👍是免费的,却可以让写博客的作者开兴好久好久😎 📚系列专栏:Java全栈,…...
C++ 多态
引例: #include<iostream> using namespace std; class Animal { public:void speak(){cout<<"动物在说话"<<endl;} }; class Cat:public Animal { public:void speak(){cout<<"小猫在说话"<<endl;} }; void Do…...
.Net框架,除了EF还有很多很多......
文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...
LeetCode - 394. 字符串解码
题目 394. 字符串解码 - 力扣(LeetCode) 思路 使用两个栈:一个存储重复次数,一个存储字符串 遍历输入字符串: 数字处理:遇到数字时,累积计算重复次数左括号处理:保存当前状态&a…...
C++.OpenGL (10/64)基础光照(Basic Lighting)
基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...
USB Over IP专用硬件的5个特点
USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中,从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备(如专用硬件设备),从而消除了直接物理连接的需要。USB over IP的…...
Docker 本地安装 mysql 数据库
Docker: Accelerated Container Application Development 下载对应操作系统版本的 docker ;并安装。 基础操作不再赘述。 打开 macOS 终端,开始 docker 安装mysql之旅 第一步 docker search mysql 》〉docker search mysql NAME DE…...
NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合
在汽车智能化的汹涌浪潮中,车辆不再仅仅是传统的交通工具,而是逐步演变为高度智能的移动终端。这一转变的核心支撑,来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒(T-Box)方案:NXP S32K146 与…...
day36-多路IO复用
一、基本概念 (服务器多客户端模型) 定义:单线程或单进程同时监测若干个文件描述符是否可以执行IO操作的能力 作用:应用程序通常需要处理来自多条事件流中的事件,比如我现在用的电脑,需要同时处理键盘鼠标…...
DeepSeek源码深度解析 × 华为仓颉语言编程精粹——从MoE架构到全场景开发生态
前言 在人工智能技术飞速发展的今天,深度学习与大模型技术已成为推动行业变革的核心驱动力,而高效、灵活的开发工具与编程语言则为技术创新提供了重要支撑。本书以两大前沿技术领域为核心,系统性地呈现了两部深度技术著作的精华:…...
DAY 26 函数专题1
函数定义与参数知识点回顾:1. 函数的定义2. 变量作用域:局部变量和全局变量3. 函数的参数类型:位置参数、默认参数、不定参数4. 传递参数的手段:关键词参数5 题目1:计算圆的面积 任务: 编写一…...
Vue 3 + WebSocket 实战:公司通知实时推送功能详解
📢 Vue 3 WebSocket 实战:公司通知实时推送功能详解 📌 收藏 点赞 关注,项目中要用到推送功能时就不怕找不到了! 实时通知是企业系统中常见的功能,比如:管理员发布通知后,所有用户…...
