当前位置: 首页 > news >正文

【Linux-Day10-信号量,共享内存,消息队列】

信号量

信号量描述

信号量是一个特殊的变量,一般取正数值。它的值代表允许访问的资源数目,获取资源 时,需要对信号量的值进行原子减一,该操作被称为 P 操作。

当信号量值为 0 时,代表没有资源可用,P 操作会阻塞。

释放资源时,需要对信号量的值进行原子加一,该操作被称为 V 操作。

信号量主要用来同步进程。

信号量的值如果只取 0,1,将其称为二值信号量。

如果信 号量的值大于 1,则称之为计数信号量。

**临界资源:同一时刻,只允许被一个进程或线程访问的资源 **

**临界区:访问临界资源的代码段 **

信号量使用

semget(); 创建或者获取已存在的信号量

int semget(key_t key, int nsems, int semflg);

semget()成功返回信号量的 ID, 失败返回-1

key:两个进程使用相同的 key 值,就可以使用同一个信号量

nsems:内核维护的是一个信号量集,在新建信号量时,其指定信号量集中信号 量的个数

semflg 可选: IPC_CREAT IPC_EXCL

semop()对信号量进行改变,做 P 操作或者 V 操作

int semop(int semid, struct sembuf *sops, unsigned nsops);

semop()成功返回 0,失败返回-1

struct sembuf

{

unsigned short sem_num; //指定信号量集中的信号量下标

short sem_op; //其值为-1,代表 P 操作,其值为 1,代表 V 操作

short sem_flg; //SEM_UNDO

};

semctl()控制信号量

int semctl( int semid, int semnum, int cmd, …);
semctl()成功返回 0,失败返回-1

semid:信号量的ID

cmd 选项: SETVAL IPC_RMID

union semun
{
int val;
struct semid_ds *buf;
unsigned short *array;
struct seminfo *_buf;
};

封装一个c文件实现创建一个信号

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/sem.h>union semun
{int val;
};
static int semid = -1;
void sem_init()
{semid = semget((key_t)1234,1,IPC_CREAT|IPC_EXCL|0600);//全新创建信号量,如果存在就失败if ( semid == -1 )//失败,表示该(key_t)1234)信号已存在{semid = semget((key_t)1234,1,0600);//获取已存在的信号量idif ( semid == -1){printf("semget err\n");}}else//全新创建成功,那么要进行初始化{union semun a;a.val = 1;//信号量的初始值if ( semctl(semid,0,SETVAL,a) == -1)//设置初始值{printf("semctl err\n");}}
}
void sem_p()
{struct sembuf buf;buf.sem_num = 0;buf.sem_op = -1; //p操作buf.sem_flg = SEM_UNDO;if ( semop(semid,&buf,1) == -1){printf("semop p err\n");}}
void sem_v()
{struct sembuf buf;buf.sem_num = 0;buf.sem_op = 1; //v操作buf.sem_flg = SEM_UNDO;if ( semop(semid,&buf,1) == -1){printf("semop v err\n");}
}
void sem_destroy()
{if ( semctl(semid,0,IPC_RMID) == -1){printf("semctl destroy err\n");}}

假设资源只有一份,每轮a进程使用2次 ,b进程使用3次,如何解决。

我们可以使用信号量解决临界资源问题

a进程代码

#include <unistd.h>
#include <stdio.h>
#include <fcntl.h>
#include <signal.h>
#include <stdlib.h>
#include <string.h>
#include <signal.h>
#include "sem.c"
int main()
{sem_init();//for(int i = 0; i < 5; i++){//psem_p();printf("a");fflush(stdout);int n = rand() % 3;sleep(n);printf("a");fflush(stdout);sem_v();n = rand() % 3;sleep(n);}sleep(10);sem_destroy();return 0;
}

b进程代码

#include <unistd.h>
#include <stdio.h>
#include <fcntl.h>
#include <signal.h>
#include <stdlib.h>
#include <string.h>
#include <signal.h>
#include "sem.c"
int main()
{sem_init();for(int i = 0; i < 5; i++){sem_p();printf("b"); int n = rand() % 3;sleep(n);printf("bb");fflush(stdout);sem_v();n = rand() % 3;sleep(n);}return 0;
}

效果如下:a,b不会同时访问该资源

共享内存

共享内存原理

共享内存为多个进程之间共享和传递数据提供了一种有效的方式。共享内存是先在物理 内存上申请一块空间,多个进程可以将其映射到自己的虚拟地址空间中。所有进程都可以访 问共享内存中的地址,就好像它们是由 malloc 分配的一样。如果某个进程向共享内存写入了 数据,所做的改动将立刻被可以访问同一段共享内存的任何其他进程看到。由于它并未提供 同步机制,所以我们通常需要用其他的机制来同步对共享内存的访问。

shemget()创建共享内存

int shmget(key_t key, size_t size, int shmflg);
shmget()用于创建或者获取共享内存
shmget()成功返回共享内存的 ID, 失败返回-1
key: 不同的进程使用相同的 key 值可以获取到同一个共享内存
size: 创建共享内存时,指定要申请的共享内存空间大小
shmflg: IPC_CREAT IPC_EXCL

shmat() 用来创建映射

void * shmat( int shmid, const void *shmaddr, int shmflg);
shmat()将申请的共享内存的物理内存映射到当前进程的虚拟地址空间上
shmat()成功返回返回共享内存的首地址,失败返回 NULL
shmaddr:一般给 NULL,由系统自动选择映射的虚拟地址空间
shmflg: 一般给 0, 可以给 SHM_RDONLY 为只读模式,其他的为读写

shmdt()用来断开映射

int shmdt( const void *shmaddr);
shmdt()断开当前进程的 shmaddr 指向的共享内存映射
shmdt()成功返回 0, 失败返回-1

shmctl()用来控制共享内存

int shmctl( int shmid, int cmd, struct shmid_ds *buf);

shmctl()成功返回 0,失败返回-1

cmd: IPC_RMID 32. *

测试代码:

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/shm.h>
#include <sys/types.h>
#include <sys/wait.h>
int main()
{int shmid = shmget((key_t)1234,sizeof(char)*128,IPC_CREAT|0600);if(shmid ==  -1){printf("shmget error\n");exit(1);}char* p = shmat(shmid,NULL,SHM_W);if(p == NULL){printf("shmat error\n");exit(2);}while(1){char buff[128]={0};printf("parent input: ");fflush(stdout);fgets(buff,127,stdin);if(strncmp(buff,"end",3) == 0){break;}int pid = fork();if(pid == -1) break;if(pid != 0){ strcpy(p,buff);}if(pid == 0){char* ptr=shmat(shmid,NULL,0);printf("child read: %s\n",ptr);shmdt(ptr);exit(0);}wait(NULL);}shmdt(p);exit(0);
}

结果如图:

在这里插入图片描述

下面我们用信号量来实现对共享内存的访问。

代码如下:

sem.c

#include <unistd.h>
#include <stdio.h>
#include <fcntl.h>
#include <signal.h>
#include <stdlib.h>
#include <string.h>
#include <signal.h>
#include <sys/sem.h>#define SEM1 0
#define SEM2 1
union semun
{int val;
};
static int semid = -1;void sem_init()
{semid = semget((key_t)1234, 2, IPC_CREAT | IPC_EXCL | 0600); // 全新创建信号量,如果存在就失败if (semid == -1)                                             // 失败,表示已存在{semid = semget((key_t)1234, 2, 0600); // 获取已存在的信号量idif (semid == -1){printf("semget err\n");}}else // 全新创建成功,那么要进行初始化{union semun a;const int ar[2] = {1, 0};for (int i = 0; i < 2; ++i){a.val = i;                             // 信号量的初始值if (semctl(semid, i, SETVAL, a) == -1) // 设置初始值{printf("semctl err\n");}}}
}
void sem_p(int sem)
{struct sembuf buf;buf.sem_num = sem;buf.sem_op = -1; // pbuf.sem_flg = SEM_UNDO;if (semop(semid, &buf, 1) == -1){printf("semop p err\n");}
}
void sem_v(int sem)
{struct sembuf buf;buf.sem_num = sem;buf.sem_op = 1; // vbuf.sem_flg = SEM_UNDO;if (semop(semid, &buf, 1) == -1){printf("semop v err\n");}
}
void sem_destroy()
{if (semctl(semid, 0, IPC_RMID) == -1){printf("semctl destroy err\n");}
}

read.c

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/shm.h>
#include "sem.c"int main()
{int shmid = shmget((key_t)1234,128,IPC_CREAT|0600);if ( shmid == -1 ){printf("shmget err\n");exit(1);}char * s = (char*)shmat(shmid,NULL,0);if ( s == (char*)-1){printf("shmat err\n");exit(1);}sem_init();while( 1 ){sem_p(SEM2);if ( strncmp(s,"end",3) == 0 ){break;}printf("read:%s\n",s);sem_v(SEM1);} shmdt(s);shmctl(shmid,IPC_RMID,NULL);sem_destroy();
}

write.c

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/shm.h>
#include "sem.c"int main()
{int shmid = shmget((key_t)1234,128,IPC_CREAT|0600);if ( shmid == -1 ){printf("shmget err\n");exit(1);}char* s = (char*)shmat(shmid,NULL,0);if ( s == (char*)-1) {printf("shmat err\n");exit(1);}   sem_init();while( 1 ){printf("input: ");char buff[128] = {0};fflush(stdout);fgets(buff,128,stdin);sem_p(SEM1);strcpy(s,buff);sem_v(SEM2);if ( strncmp(buff,"end",3) == 0){break;}}shmdt(s);
}

消息队列

接口介绍

1.msgget() 获取消息队列

int msgget(key_t key, int msqflg);
msgget()创建或者获取一个消息队列
msgget()成功返回消息队列 ID,失败返回-1
msqflg: IPC_CREAT

2.msgsnd()发送信息

int msgsnd( int msqid, const void *msqp, size_t msqsz, int msqflg);
msgsnd()发送一条消息,消息结构为:
struct msgbuf
{
long mtype; // 消息类型, 必须大于 0 必须有
char mtext[1]; // 消息数据
};
msgsnd()成功返回 0, 失败返回-1
msqsz: 指定 mtext 中有效数据的长度
msqflg:一般设置为 0 可以设置 IPC_NOWAIT

3.msgrcv()接收消息

ssize_t msgrcv( int msqid, void *msgp, size_t msqsz, long msqtyp, int msqflg);
msgrcv()接收一条消息
msgrcv()成功返回 mtext 中接收到的数据长度, 失败返回-1
msqtyp: 指定接收的消息类型,类型可以为 0(忽略类型)
msqflg: 一般设置为 0 可以设置 IPC_NOWAIT

4.msgctl()控制消息队列

int msgctl( int msqid, int cmd, struct msqid_ds *buf);
msgctl()控制消息队列
msgctl()成功返回 0,失败返回-1
cmd: IPC_RMID

测试代码:

msgread.c //从消息队列中读取

#include<stdio.h>
#include<stdlib.h>
#include<unistd.h>
#include<string.h>
#include<assert.h>
#include<sys/msg.h>
struct message
{long type;//固定char msg[16];
};
int main()
{int msgid=msgget((key_t)1234,IPC_CREAT|0600);if(msgid==-1){printf("msgget err\n");exit(1);}struct message dt;msgrcv(msgid,&dt,16,1,0);//0代表不区分类型printf("read message:%s\n",dt.msg);exit(0);
}

msgcreat.c //写入数据

#include<stdio.h>
#include<stdlib.h>
#include<unistd.h>
#include<string.h>
#include<assert.h>
#include<sys/msg.h>
struct message //自定义结构体
{long type;//固定的char msg[16];
};
int main()
{int msgid=msgget((key_t)1234,IPC_CREAT|0600);if(msgid==-1){printf("msgget err\n");exit(1);}struct message dt;dt.type=1;strcpy(dt.msg,"China");msgsnd(msgid,&dt,16,0);exit(0);
}

自定义的结构体第一个是消息类型,读取消息是按类型进行的,0为不区分消息类型,可以全部读取。

写入到消息队列的数据在内存中,除了删除和重启系统,不会丢失。

相关文章:

【Linux-Day10-信号量,共享内存,消息队列】

信号量 信号量描述 信号量是一个特殊的变量&#xff0c;一般取正数值。它的值代表允许访问的资源数目&#xff0c;获取资源 时&#xff0c;需要对信号量的值进行原子减一&#xff0c;该操作被称为 P 操作。 当信号量值为 0 时&#xff0c;代表没有资源可用&#xff0c;P 操作…...

使用IntelliJ IDEA本地启动调试Flink流计算工程的2个异常解决

记录&#xff1a;471 场景&#xff1a;使用IntelliJ IDEA本地启动调试Flink流计算时&#xff0c;报错一&#xff1a;加载DataStream报错java.lang.ClassNotFoundException。报错二&#xff1a;No ExecutorFactory found to execute the application。 版本&#xff1a;JDK 1.…...

对象及日期对象

对象 1.什么是对象 类是对象的抽象,对象是类的实例 程序算法数据结构 万物皆对象,对象是一个具体的事物,看到见摸得着,对象是一组无序相关属性和方法的集合(无序,所以对象没有length属性),所有事物都是对象,列如字符串,数值,数组,函数等. 属性:事物的特征,在对象中用属性表…...

鼠标滚轮编码器解析

文章目录 前言一、鼠标滚轮编码器逻辑&#xff1f;二、使用步骤 1.引入库2.读入数据总结 前言 鼠标滚轮编码器为三脚接入&#xff0c;一个COM脚C&#xff08;一般是接地&#xff09;&#xff0c;两个脉冲波形输入脚A、B&#xff0c;转动滚轮编码器会在两个脉冲输入脚上产生脉冲…...

【PTA】攀拓(PAT)- 程序设计(甲级)2023年春季考试

个人学习记录&#xff0c;代码难免不尽人意。 今天又斥资买了今年春季的真题一试&#xff0c;呃&#xff0c;感觉尽力了&#xff0c;89分&#xff0c;在当年排名23&#xff0c;感觉还不错&#xff0c;没有出现读不懂的题目和没有思路的情况&#xff0c;扣的11分分别是第二题两个…...

Spring Cloud Gateway 实现原理

Spring Cloud Gateway是Spring Cloud生态系统中的一个组件&#xff0c;用于构建基于Spring Boot的微服务架构中的网关服务。它的主要目的是提供一种灵活的方式来路由、过滤和转换HTTP请求&#xff0c;从而允许您构建强大、高性能的微服务应用程序。 以下是Spring Cloud Gatewa…...

嘉泰实业:真实低门槛,安全有保障

在互联网金融大行其道的当下&#xff0c;无论用户是多么的青睐、喜爱这种便捷的理财方式&#xff0c;也一定得把资金安全放在心上。要投就投那些实力背景雄厚&#xff0c;诚信经营的平台&#xff0c;可以选择投资用户基数庞大的理财老品牌&#xff0c;也可以选择发展势头迅猛的…...

spring boot 2.7 -> 3.0升级指南

spring boot提供一个版本迁移指南 2.7 -> 3.0...

MQTT 连接优化指南

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f984; 博客首页——&#x1f405;&#x1f43e;猫头虎的博客&#x1f390; &#x1f433; 《面试题大全专栏》 &#x1f995; 文章图文…...

算法和数据结构学习中的一些小的工具函数

算法和数据结构学习中的一些小的工具函数 作者&#xff1a;Grey 原文地址&#xff1a; 博客园&#xff1a;算法和数据结构学习中的一些小的工具函数 CSDN&#xff1a;算法和数据结构学习中的一些小的工具函数 提取一个数二进制最右侧的 1 比如二进制为&#xff1a;0100 0…...

解决2K/4K高分屏下Vmware等虚拟机下Kail Linux界面显示问题

问题现象 在我们日常使用VirtualBox、Vmware workstation、Hyper-V等虚拟机安装使用Kali系统&#xff0c;在2K/4K高分辨率电脑下Kali系统界面显示太小&#xff0c;包括各种软件及命令终端字体均无法很直观的看出&#xff0c;影响我们的正常测试及使用。 常规处理思路 很多人…...

【校招VIP】java语言考点之双亲委派模型

考点介绍&#xff1a; 双亲委派是校招面试中的高频考点之一。双亲委派机制定义: 当一个类加载器收到了类加载的请求的时候&#xff0c;他不会直接去加载指定的类&#xff0c;而是把这个请求委托给自己的父加载器去加载&#xff0c;只有父加载器无法加载这个类的时候&#xff0…...

2023年阿里云新用户云服务器价格表

阿里云&#xff0c;作为国内领先的云计算服务提供商&#xff0c;一直致力于为全球用户提供安全、稳定、高效的云计算服务。对于新用户来说&#xff0c;阿里云服务器是一个非常不错的选择。那么&#xff0c;阿里云新用户云服务器的价格是怎样的呢&#xff1f;本文将为大家详细介…...

信号相关名词概念汇总-采样周期、泄露、窗函数等

信号相关名词概念汇总-采样周期、泄露、窗函数等 以下为信号相关名词概念的汇总 1 名词解释 采样周期/间隔&#xff1a;采样频率的倒数&#xff0c;两次相邻采样之间的时间间隔采样时间&#xff1a;采样的总时长&#xff0c;即采样点数N和采样周期的乘积采样频率&#xff1a; …...

数字化新零售营销模式如何落地?数字化新零售营销功能推荐

​通过科技手段&#xff0c;针对对线下零售店面的客户进行消费行为、频次等的分析&#xff0c;并进一步整合线上线下资源&#xff0c;实现实体零售的效率充分化&#xff0c;便是目前很火的新零售营销模式&#xff0c;能够将实体门店与数字化技术进行有机结合&#xff0c;通过为…...

712. 两个字符串的最小ASCII删除和 -- 动规

712. 两个字符串的最小ASCII删除和 class MinimumDeleteSum:"""712. 两个字符串的最小ASCII删除和https://leetcode.cn/problems/minimum-ascii-delete-sum-for-two-strings/"""def solution(self, s1: str, s2: str) -> int:""&qu…...

python中的小tips

1、注释 1、注释快捷键&#xff1a; Ctrl/ 可以注释掉光标所在的这一行&#xff0c;或者是选中的区域。 对于注释掉的这一行或者这一区域&#xff0c;按下ctrl/则会去掉注释。 2、多行注释 在写多行注释时&#xff0c;英文状态下写三个"&#xff0c;会自动变成六个"&…...

高精度(加减乘除)

高精度算法出现的原因 当参与运算的数的范围大大的超出了标准数据类型&#xff0c;如int&#xff08;-2147483648 ~ 2147483647&#xff09;或者long long的范围&#xff0c;就需要使用高精度算法来进行数的运算。高精度运算的特点是代码长度比较长&#xff0c;本质是对数学运算…...

java企业数据管理系统

项目介绍 此项目为企业数据管理系统的后端部分&#xff0c;前端部分请参考vue-admin&#xff0c;项目实现了菜单管理、用户管理、角色管理和权限管理四个基础模块&#xff0c;前端菜单管理结合动态路由可自由添加菜单。结合Shiro权限管理实现了菜单和按钮的权限控制。 ❝ 前端…...

【云原生进阶之PaaS中间件】第二章Zookeeper-3.1分布式架构介绍

1 分布式架构详解 1.1 分布式发展历程 1.1.1 单点集中式 特点&#xff1a;App、DB、FileServer都部署在一台机器上。并且访问请求量较少 1.1.2 应用服务和数据服务拆分 特点&#xff1a;App、DB、FileServer分别部署在独立服务器上。并且访问请求量较少 1.1.3 使用缓存改善…...

2023-09-11力扣每日一题

链接&#xff1a; 630. 课程表 III 题意 一个课程花费ai天&#xff0c;需要在bi天之前修好才算成功&#xff0c;求最多能修几个课 解&#xff1a; ddl越靠后的应该越晚做&#xff0c;所以先按照b排序&#xff08;这还用问为什么吗&#xff1f; 然后通过维护一个优先队列存…...

windows10使用wheel安装tensorflow2.13.0/2.10.0 (保姆级教程)

安装过程 安装虚拟环境安装virtualenv安装满足要求的python版本使用virtualenv创建指定python版本的虚拟环境 安装tensorflow安装tensorflow-docs直接下载使用wheel下载 在VSCode编辑器中使用虚拟环境下的python解释器&#xff0c;并使用tensorflow常见错误 注意&#xff1a; t…...

【LeetCode与《代码随想录》】贪心算法篇:做题笔记与总结-JavaScript版

代码随想录 贪心的本质是选择每一阶段的局部最优&#xff0c;从而达到全局最优。 文章目录 455. 分发饼干376. 摆动序列53. 最大子数组和122. 买卖股票的最佳时机 II55. 跳跃游戏45. 跳跃游戏 II1005. K 次取反后最大化的数组和134. 加油站135. 分发糖果&#xff08;困难&#…...

Http客户端OkHttp的基本使用

简介 OkHttp是一个强大的开源HTTP客户端&#xff0c;它被广泛用于Android和Java应用程序中。OkHttp具有简单易用的API&#xff0c;提供了许多高级功能&#xff0c;如连接池、请求压缩和缓存等。 依赖 要使用OkHttp&#xff0c;需要在项目的构建文件中添加以下依赖&#xff1…...

认识网线上的各种参数标号

最近工作需要&#xff0c;接触了很多不同类型的网线&#xff0c;为了能够区分不同型号的网线&#xff0c;特意做一篇笔记用来学习&#xff0c;如有记录有误之处&#xff0c;欢迎大家指正~初步认识网线 常用的网络电缆有三种&#xff1a;双绞线、同轴电缆和光纤电缆&#xff08…...

软件测开记录(一)

知识点汇总 14&#xff1a;00面试&#xff0c;14&#xff1a;06就出来了&#xff0c;问的问题有点变态。。。 python自动化测试学习路线&#xff08;从入门到精通&#xff09; 单元知识点 测试常用工具 常用的客户端和服务器端开发和测试工具 服务器与客户端常用测试工具与…...

基数排序之代码解析

基数排序是生活中咱们写程序用的比较少的排序&#xff0c;但是这个排序比较巧妙&#xff0c;今天就给大家讲一讲&#xff0c;原理都在代码里面&#xff0c;下面会给一些解释。 import java.util.Arrays;public class Code04_RadixSort {// only for no-negative valuepublic s…...

使用C语言EasyX 创建动态爱心背景

简介 在计算机图形学的世界中&#xff0c;有很多方法可以使程序的界面更加吸引人。在本篇博客中&#xff0c;我将向大家介绍如何使用 EasyX 图形库在 C 中创建一个动态的爱心背景。这不仅是一个简单的动画效果&#xff0c;它还包括背景的星星、旋转的心形以及一个美观的背景渐…...

springboot redisTemplate.opsForValue().setIfAbsent返回null原理

一、版本 springboot版本&#xff1a;spring-boot-starter-data-redis 2.1.6 redisson版本&#xff1a;redisson-spring-boot-starter 3.11.5 二、场景 Boolean res redisTemplate.opsForValue().setIfAbsent("key","value");以上代码同一时间多次执行…...

Python调用Jumpserver的Api接口增删改查

引言 Jumpserver是一款强大的堡垒机系统&#xff0c;可以有效管理和控制企业内部服务器的访问权限&#xff0c;提高网络安全性。本文将介绍如何使用Python编程语言&#xff0c;结合Jumpserver提供的API接口&#xff0c;实现对跳板机的管理和操作。 1、什么是Jumpserver&#…...

中国建设银行培训网站/网络推广软件免费

文章目录1、新建xcs格式文本2、打开xshell&#xff0c;导入配置文件3、配色方案效果图1、新建xcs格式文本 [skycolor] text00ff80 cyan(bold)00ffff text(bold)e9e9e9 magentac000c0 green80ff00 green(bold)3c5a38 background042028 cyan00c0c0 red(bold)ff0000 yellowc0c000…...

做国外网站什么好/网站建设推广优化

一、PGP介绍 1、PGP简述 PGP-Pretty Good Privacy&#xff0c;是一个基于RSA公钥和对称加密相结合的邮件加密软件。该系统能为电子邮件和文件存储应用过程提供认证业务和保密业务。 PGP是个混合加密算法&#xff0c;它由一个对称加密算法&#xff08;IDEA&#xff09;、一个…...

做网站的软件公司/微信朋友圈产品推广语

TOraSQL是一个SQL语句执行控件&#xff0c;包括PL/SQL块等&#xff0c;不返回数据集结果。 名称 类型 说明 ChangeCursor Boolean 在非阻塞模式下是否允许改变屏幕的光标 WaitExecuting 在非阻塞模式下用于等待SQL执行结束 TOraTable 名称 类型 说明 TableName S…...

.ent做的网站有哪些/自己建网页

2019独角兽企业重金招聘Python工程师标准>>> VM0808H具备绝佳的弹性与控制力&#xff0c;适用于多屏幕HDMI架构全球数字信息分享领导厂商 – 宏正自动科技&#xff08;ATEN International&#xff0c;6277&#xff09;今日针对旗下VanCryst™专业级影音产品线发表全…...

庞各庄网站开发公司/友情链接互换网站

欢迎来到Android应用程序开发&#xff01; 这个课程教你如何建立你的第一个Android应用程序。你将会学习到如何创建一个Android项目&#xff0c;并运行一个可调试的应用版本。你将也会学习一些Android应用设计的基本原理&#xff0c;包含如何构建一个简单的用户界面和处理用户…...

天津网站制作公司/百度网站优化公司

基于连通域快速文字图像分割算法基于连通域快速文字图像分割算法摘 要&#xff1a;针对文本图像中的文字难以提取分割的问题&#xff0c;文章提出了一种基于连通域的算法。算法通过连通域阀值分析&#xff0c;将文本块联通&#xff0c;继而将文字成功分割。实验结果表明本算法能…...