CUDA小白 - NPP(8) 图像处理 Morphological Operations
cuda小白
原始API链接 NPP
GPU架构近些年也有不少的变化,具体的可以参考别的博主的介绍,都比较详细。还有一些cuda中的专有名词的含义,可以参考《详解CUDA的Context、Stream、Warp、SM、SP、Kernel、Block、Grid》
常见的NppStatus,可以看这里。
7 是图像的傅里叶变换,还在学习中
本文主要讲述的是形态学变换
Dilation
膨胀操作(对二值化物体边界点进行扩充,将与物体接触的所有背景点合并到该物体中,使边界向外部扩张。如果两个物体间隔较近,会将两物体连通在一起。)
// 返回mask下的最大像素值作为输出的pixel,如果mask的值为0,则不参与最大值查询
NppStatus nppiDilate_8u_C3R(const Npp8u *pSrc,Npp32s nSrcStep,Npp8u *pDst,Npp32s nDstStep,NppiSize oSizeROI,const Npp8u *pMask,NppiSize oMaskSize,NppiPoint oAnchor);
// 与前一个接口的区别是多了一个borderType的类型指定
/*
NppiBorderType {NPP_BORDER_UNDEFINED,NPP_BORDER_NONE,NPP_BORDER_CONSTANT,NPP_BORDER_REPLICATE,NPP_BORDER_WARP,NPP_BORDER_MIRROR
};
*/
NppStatus nppiDilateBorder_8u_C3R(const Npp8u *pSrc,Npp32s nSrcStep,NppiSize oSrcSize,NppiPoint oSrcOffset,Npp8u *pDst,Npp32s nDstStep,NppiSize oSizeROI,const Npp8u *pMask,NppiSize oMaskSize,NppiPoint oAnchor,NppiBorderType eBorderType);
// 特定大小的kernel
NppStatus nppiDilate3x3_8u_C3R(const Npp8u *pSrc,Npp32s nSrcStep,Npp8u *pDst,Npp32s nDstStep,NppiSize oSizeROI);
code
#include <iostream>
#include <cuda_runtime.h>
#include <npp.h>
#include <opencv2/opencv.hpp>#define CUDA_FREE(ptr) { if (ptr != nullptr) { cudaFree(ptr); ptr = nullptr; } }int main() {std::string directory = "../";cv::Mat image_dog = cv::imread(directory + "dog.png");int image_width = image_dog.cols;int image_height = image_dog.rows;int image_size = image_width * image_height;// =============== device memory ===============// inputuint8_t *in_image;cudaMalloc((void**)&in_image, image_size * 3 * sizeof(uint8_t));cudaMemcpy(in_image, image_dog.data, image_size * 3 * sizeof(uint8_t), cudaMemcpyHostToDevice);// outputuint8_t *out_ptr1, *out_ptr2;cudaMalloc((void**)&out_ptr1, image_size * 3 * sizeof(uint8_t)); // 三通道cudaMalloc((void**)&out_ptr2, image_size * 3 * sizeof(uint8_t)); // 三通道NppiSize in_size;in_size.width = image_width;in_size.height = image_height;NppiRect rc;rc.x = 0;rc.y = 0;rc.width = image_width;rc.height = image_height;int mask_size = 10;cv::Mat mat_mask = cv::Mat::ones(mask_size, mask_size, CV_8UC1);uint8_t *mask;cudaMalloc((void**)&mask, mask_size * mask_size * sizeof(uint8_t));cudaMemcpy(mask, mat_mask.data, mask_size * mask_size * sizeof(uint8_t), cudaMemcpyHostToDevice);cv::Mat out_image = cv::Mat::zeros(image_height, image_width, CV_8UC3);NppStatus status;NppiSize npp_mask_size;npp_mask_size.width = mask_size;npp_mask_size.height = mask_size;NppiPoint pt;pt.x = 0;pt.y = 0;// =============== nppiDilate_8u_C3R ===============status = nppiDilate_8u_C3R(in_image, image_width * 3, out_ptr1, image_width * 3, in_size, mask, npp_mask_size, pt);if (status != NPP_SUCCESS) {std::cout << "[GPU] ERROR nppiDilate_8u_C3R failed, status = " << status << std::endl;return false;}cudaMemcpy(out_image.data, out_ptr1, image_size * 3, cudaMemcpyDeviceToHost);cv::imwrite(directory + "dilate.jpg", out_image);// =============== nppiDilateBorder_8u_C3R ===============NppiPoint src_pt;src_pt.x = 100;src_pt.y = 100;status = nppiDilateBorder_8u_C3R(in_image, image_width * 3, in_size, src_pt, out_ptr2, image_width * 3, in_size, mask, npp_mask_size, pt, NPP_BORDER_REPLICATE);if (status != NPP_SUCCESS) {std::cout << "[GPU] ERROR nppiDilateBorder_8u_C3R failed, status = " << status << std::endl;return false;}cudaMemcpy(out_image.data, out_ptr2, image_size * 3, cudaMemcpyDeviceToHost);cv::imwrite(directory + "dilate_border.jpg", out_image);// freeCUDA_FREE(in_image)CUDA_FREE(out_ptr1)CUDA_FREE(out_ptr2)
}
make
cmake_minimum_required(VERSION 3.20)
project(test)find_package(OpenCV REQUIRED)
include_directories(${OpenCV_INCLUDE_DIRS})find_package(CUDA REQUIRED)
include_directories(${CUDA_INCLUDE_DIRS})
file(GLOB CUDA_LIBS "/usr/local/cuda/lib64/*.so")add_executable(test test.cpp)
target_link_libraries(test${OpenCV_LIBS}${CUDA_LIBS}
)
result
注意:
- nppiDilateBorder_8u_C3R 仅支持border的模式为 NPP_BORDER_REPLICATE,其他模式会报错,错误码为-9999。
Erode
腐蚀操作
NppStatus nppiErode_8u_C3R(const Npp8u *pSrc,Npp32s nSrcStep,Npp8u *pDst,Npp32s nDstStep,NppiSize oSizeROI,const Npp8u *pMask,NppiSize oMaskSize,NppiPoint oAnchor);
NppStatus nppiErodeBorder_8u_C3R(const Npp8u *pSrc,Npp32s nSrcStep,NppiSize oSrcSize,NppiPoint oSrcOffset,Npp8u *pDst,Npp32s nDstStep,NppiSize oSizeROI,const Npp8u *pMask,NppiSize oMaskSize,NppiPoint oAnchor,NppiBorderType eBorderType);
// 固定大小的Erode
NppStatus nppiErode3x3_8u_C3R(const Npp8u *pSrc,Npp32s nSrcStep,Npp8u *pDst,Npp32s nDstStep,NppiSize oSizeROI);
// nppiErode3x3Border_8u_C3R 不详细介绍了
再此使用上一个实验膨胀之后的图像作为腐蚀的输入。
code
#include <iostream>
#include <cuda_runtime.h>
#include <npp.h>
#include <opencv2/opencv.hpp>#define CUDA_FREE(ptr) { if (ptr != nullptr) { cudaFree(ptr); ptr = nullptr; } }int main() {std::string directory = "../";cv::Mat image_dog = cv::imread(directory + "dilate.jpg");int image_width = image_dog.cols;int image_height = image_dog.rows;int image_size = image_width * image_height;// =============== device memory ===============// inputuint8_t *in_image;cudaMalloc((void**)&in_image, image_size * 3 * sizeof(uint8_t));cudaMemcpy(in_image, image_dog.data, image_size * 3 * sizeof(uint8_t), cudaMemcpyHostToDevice);// outputuint8_t *out_ptr1, *out_ptr2;cudaMalloc((void**)&out_ptr1, image_size * 3 * sizeof(uint8_t)); // 三通道cudaMalloc((void**)&out_ptr2, image_size * 3 * sizeof(uint8_t)); // 三通道NppiSize in_size;in_size.width = image_width;in_size.height = image_height;NppiRect rc;rc.x = 0;rc.y = 0;rc.width = image_width;rc.height = image_height;int mask_size = 10;cv::Mat mat_mask = cv::Mat::ones(mask_size, mask_size, CV_8UC1);uint8_t *mask;cudaMalloc((void**)&mask, mask_size * mask_size * sizeof(uint8_t));cudaMemcpy(mask, mat_mask.data, mask_size * mask_size * sizeof(uint8_t), cudaMemcpyHostToDevice);cv::Mat out_image = cv::Mat::zeros(image_height, image_width, CV_8UC3);NppStatus status;NppiSize npp_mask_size;npp_mask_size.width = mask_size;npp_mask_size.height = mask_size;NppiPoint pt;pt.x = 0;pt.y = 0;// =============== nppiErode_8u_C3R ===============status = nppiErode_8u_C3R(in_image, image_width * 3, out_ptr1, image_width * 3, in_size, mask, npp_mask_size, pt);if (status != NPP_SUCCESS) {std::cout << "[GPU] ERROR nppiErode_8u_C3R failed, status = " << status << std::endl;return false;}cudaMemcpy(out_image.data, out_ptr1, image_size * 3, cudaMemcpyDeviceToHost);cv::imwrite(directory + "erode.jpg", out_image);// =============== nppiErodeBorder_8u_C3R ===============NppiPoint src_pt;src_pt.x = 100;src_pt.y = 100;status = nppiErodeBorder_8u_C3R(in_image, image_width * 3, in_size, src_pt, out_ptr2, image_width * 3, in_size, mask, npp_mask_size, pt, NPP_BORDER_REPLICATE);if (status != NPP_SUCCESS) {std::cout << "[GPU] ERROR nppiErodeBorder_8u_C3R failed, status = " << status << std::endl;return false;}cudaMemcpy(out_image.data, out_ptr2, image_size * 3, cudaMemcpyDeviceToHost);cv::imwrite(directory + "erode_border.jpg", out_image);// freeCUDA_FREE(in_image)CUDA_FREE(out_ptr1)CUDA_FREE(out_ptr2)
}
make
cmake_minimum_required(VERSION 3.20)
project(test)find_package(OpenCV REQUIRED)
include_directories(${OpenCV_INCLUDE_DIRS})find_package(CUDA REQUIRED)
include_directories(${CUDA_INCLUDE_DIRS})
file(GLOB CUDA_LIBS "/usr/local/cuda/lib64/*.so")add_executable(test test.cpp)
target_link_libraries(test${OpenCV_LIBS}${CUDA_LIBS}
)
result
注意点:
- nppiErodeBorder_8u_C3R 仅支持border的模式为 NPP_BORDER_REPLICATE,其他模式会报错,错误码为-9999。
ComplexImageMorphology
复杂图像形态学,暂时不做介绍,后续视情况而定
<<<链接>>>
相关文章:

CUDA小白 - NPP(8) 图像处理 Morphological Operations
cuda小白 原始API链接 NPP GPU架构近些年也有不少的变化,具体的可以参考别的博主的介绍,都比较详细。还有一些cuda中的专有名词的含义,可以参考《详解CUDA的Context、Stream、Warp、SM、SP、Kernel、Block、Grid》 常见的NppStatus…...
java获取音频,文本准转语音时长
jar 以上传到资源中 <dependency><groupId>it.sauronsoftware</groupId><artifactId>jave</artifactId><version>1.0.2</version></dependency> mvn install:install-file -DfileD:\xxx\xxx\jave-1.0.2.jar -DgroupIdit.sauro…...

基于串口通讯的多电机控制技术研究
基于STM32CubeMX生成keil工程 基于proteus 8.7版本进行程序验证 采用了简单的串口通讯协议 基本效果如图 先对电机旋转方向进行指令设置 :221 :320 分别实现对第二个电机正转、第三个电机反转设置 为了方便观测,程序对接受到的串口数据会进行回显。 然后使能电…...

【深入解读Redis系列】(五)Redis中String的认知误区,详解String数据类型
有时候博客内容会有变动,首发博客是最新的,其他博客地址可能会未同步,请认准https://blog.zysicyj.top 首发博客地址 系列文章地址 需求描述 现在假设有这样一个需求,我们要开发一个图像存储系统。要求如下: 该系统能快…...
段指导-示例
RDBMS 19.20 参考文档: Database Administrator’s Guide 19 Managing Space for Schema Objects 19.3.2.4 Running the Segment Advisor Manually 针对表SOE.CUSTOMERS进行段指导 -- 创建段指导 variable id number; begindeclarename varchar2(100);descr …...
LeetCode 面试题 04.02. 最小高度树
文章目录 一、题目二、C# 题解 一、题目 给定一个有序整数数组,元素各不相同且按升序排列,编写一个算法,创建一棵高度最小的二叉搜索树。 点击此处跳转题目。 示例: 给定有序数组: [-10,-3,0,5,9], 一个可能的答案是:[0,-3,9,-10…...

华为云云耀云服务器L实例评测|初始化centos镜像到安装nginx部署前端vue、react项目
文章目录 ⭐前言⭐购买服务器💖 选择centos镜像 ⭐在控制台初始化centos镜像💖配置登录密码 ⭐在webstorm ssh连接 服务器⭐安装nginx💖 wget 下载nginx💖 解压运行 ⭐添加安全组⭐nginx 配置⭐部署vue💖 使用默认的ng…...

python项目制作docker镜像,加装引用模块,部署运行!
一、创建Dockerfile # 基于python:3.10.4版本创建容器 FROM python:3.10.4 # 在容器中创建工作目录 RUN mkdir /app # 将当前Dockerfile目录下的所有文件夹和文件拷贝到容器/app目录下 COPY . /app# 由于python程序用到了requests模块和yaml模块, # python:3.10.4基…...

Redis缓存设计与性能优化
多级缓存架构 缓存设计 缓存穿透 缓存穿透是指查询一个根本不存在的数据, 缓存层和存储层都不会命中, 通常出于容错的考虑, 如果从存储层查不到数据则不写入缓存层。缓存穿透将导致不存在的数据每次请求都要到存储层去查询, 失去…...

免杀对抗-Python-混淆算法+反序列化-打包生成器-Pyinstall
Python-MSF/CS生成shellcode-上线 cs上线 1.生成shellcode-c或者python 2.打开pycharm工具,创建一个py文件,将原生态执行代码复制进去 shellcode执行代码: import ctypesfrom django.contrib.gis import ptr#cs#shellcodebytearray(b"生…...

C#__线程池的简单介绍和使用
/*线程池原理:(有备无患的默认备用后台线程)特点:线程提前建好在线程池;只能用于运行时间较短的线程。*/class Program{static void Main(string[] args){for (int i 0; i < 10; i){ThreadPool.QueueUserWorkItem(Download); …...
安全员(岗位职责)
一、 安全员 是工程项目安全生产、文明施工的直接管理者和责任人,在业务上向 公司 负责; 二、贯彻安全条例和文明施工标准是安全员 工作 准则,执行相关规章、规程是安全员的责任; 三、办理开工前安全监审和安全开工审批,编制项目工程安全监督计划,上报安全措施和分项工程安全施…...

unity 使用声网(Agora)实现语音通话
第一步、先申请一个声网账号 [Agora官网链接](https://console.shengwang.cn/) 第二步在官网创建项目 ,选择无证书模式,证书模式需要tokenh和Appld才能通话 第三步 官网下载SDK 然后导入到unity,也可以直接在unity商店…...

vue2.X 中使用 echarts5.4.0实现项目进度甘特图
vue2.X 中使用 echarts5.4.0实现项目进度甘特图 效果图: 左侧都是名称,上面是时间,当中的内容是日志内容 组件: gantt.vue <template><div id"main" style"width: 100%; height: 100%"></…...

《PostgreSQL与NoSQL:合作与竞争的关系》
🌷🍁 博主猫头虎(🐅🐾)带您 Go to New World✨🍁 🐅🐾猫头虎建议程序员必备技术栈一览表📖: 🛠️ 全栈技术 Full Stack: 📚…...

【FAQ】视频监控管理平台/视频汇聚平台EasyCVR安全检查相关问题及解决方法3.0
智能视频监控系统/视频云存储/集中存储/视频汇聚平台EasyCVR具备视频融合汇聚能力,作为安防视频监控综合管理平台,它支持多协议接入、多格式视频流分发,视频监控综合管理平台EasyCVR支持海量视频汇聚管理,可应用在多样化的场景上&…...
Java 8 新特性解读及应用实践
Java 8 新特性解读及应用实践 一、简介二、Lambda表达式三、流式编程四、日期/时间API1. 概述2. LocalDate、LocalTime、LocalDateTime等类的使用3. 格式化与解析 五、重复注解和类型注解1. 概念与作用2. 重复注解实例3. 类型注解实例 六、小结回顾 一、简介 Java 8带来了众多…...

C++项目实战——基于多设计模式下的同步异步日志系统-④-日志系统框架设计
文章目录 专栏导读模块划分日志等级模块日志消息模块日志消息格式化模块日志消息落地模块日志器模块日志器管理模块异步线程模块 模块关系图 专栏导读 🌸作者简介:花想云 ,在读本科生一枚,C/C领域新星创作者,新星计划导…...

计算机专业毕业设计项目推荐02-个人医疗系统(Java+原生Js+Mysql)
个人医疗系统(Java原生JsMysql) **介绍****系统总体开发情况-功能模块****各部分模块实现** 介绍 本系列(后期可能博主会统一为专栏)博文献给即将毕业的计算机专业同学们,因为博主自身本科和硕士也是科班出生,所以也比较了解计算机专业的毕业设计流程以…...

Nginx__高级进阶篇之LNMP动态网站环境部署
动态网站和LNMP(LinuxNginxMySQLPHP)都是用于建立和运行 web 应用程序的技术。 动态网站是通过服务器端脚本语言(如 PHP、Python、Ruby等)动态生成网页内容的网站。通过这种方式,动态网站可以根据用户的不同请求生成不…...

深度学习在微纳光子学中的应用
深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度
一、引言:多云环境的技术复杂性本质 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,基础设施的技术债呈现指数级积累。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...
设计模式和设计原则回顾
设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)
目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关࿰…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南 在数字化营销时代,邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天,我们将深入解析邮件打开率、网站可用性、页面参与时…...
Device Mapper 机制
Device Mapper 机制详解 Device Mapper(简称 DM)是 Linux 内核中的一套通用块设备映射框架,为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程,并配以详细的…...

push [特殊字符] present
push 🆚 present 前言present和dismiss特点代码演示 push和pop特点代码演示 前言 在 iOS 开发中,push 和 present 是两种不同的视图控制器切换方式,它们有着显著的区别。 present和dismiss 特点 在当前控制器上方新建视图层级需要手动调用…...
Caliper 配置文件解析:fisco-bcos.json
config.yaml 文件 config.yaml 是 Caliper 的主配置文件,通常包含以下内容: test:name: fisco-bcos-test # 测试名称description: Performance test of FISCO-BCOS # 测试描述workers:type: local # 工作进程类型number: 5 # 工作进程数量monitor:type: - docker- pro…...