当前位置: 首页 > news >正文

回归预测 | MATLAB实现PSO-SDAE粒子群优化堆叠去噪自编码器多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现PSO-SDAE粒子群优化堆叠去噪自编码器多输入单输出回归预测(多指标,多图)

目录

    • 回归预测 | MATLAB实现PSO-SDAE粒子群优化堆叠去噪自编码器多输入单输出回归预测(多指标,多图)
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

1
2
3
在这里插入图片描述

在这里插入图片描述

基本介绍

回归预测 | MATLAB实现PSO-SDAE粒子群优化堆叠去噪自编码器多输入单输出回归预测(多指标,多图),输入多个特征,输出单个变量,多输入单输出回归预测;
多指标评价,代码质量极高;excel数据,方便替换,运行环境2022及以上。

程序设计

  • 完整源码和数据获取方式:私信回复PSO-SDAE粒子群优化堆叠去噪自编码器多输入单输出回归预测(多指标,多图)
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
res = xlsread('data.xlsx');%%  划分训练集和测试集
temp = randperm(103);P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test);%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%%  均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);%%  相关指标计算
% 决定系数 R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test -  T_sim2)^2 / norm(T_test -  mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])% 平均绝对误差 MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])% 平均相对误差 MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

相关文章:

回归预测 | MATLAB实现PSO-SDAE粒子群优化堆叠去噪自编码器多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现PSO-SDAE粒子群优化堆叠去噪自编码器多输入单输出回归预测(多指标,多图) 目录 回归预测 | MATLAB实现PSO-SDAE粒子群优化堆叠去噪自编码器多输入单输出回归预测(多指标,多图)效果一览…...

python自学

自学第一步 第一个简单的基础,向世界说你好 启动python 开始 print是打印输出的意思,就是输出引号内的内容。 标点符号必须要是英文的,因为他只认识英文的标点符号。 exit()推出python。 我们创建一个文本文档&…...

元宇宙安全与著作权相关市场与技术动态:韩国视角

元宇宙市场动态 元宇宙安全与著作权维护技术现状 元宇宙有可能为商业创造巨大价值,尤其是在零售和时尚领域。时尚产品的象征性价值不仅在物理空间中得以保持,在虚拟空间中也是如此。通过元宇宙平台,企业可以开发虚拟产品,降低供…...

springboot整合neo4j--采用Neo4jClient和Neo4jTemplate方式

1.背景 看了spring-boot-starter-data-neo4j的源码之后发现,该starter内已经实现了Neo4jClient和Neo4jTemplate,我们只需要使用Autowire就能直接使用它操作neo4j。 Neo4jClient方式与我的另一篇springboot整合neo4j-使用原生cypher Java API博客方式一样…...

【算法与数据结构】701、LeetCode二叉搜索树中的插入操作

文章目录 一、题目二、解法三、完整代码 所有的LeetCode题解索引,可以看这篇文章——【算法和数据结构】LeetCode题解。 一、题目 二、解法 思路分析:这道题关键在于分析插入值的位置,不论插入的值是什么(插入值和原有树中的键值都…...

前端--HTML

文章目录 HTML结构快速生成代码框架HTML常见标签 表格标签 编写简历信息 填写简历信息 Emmet 快捷键 HTML 特殊字符 一、HTML结构 1.认识HTML标签 HTML 代码是由 "标签" 构成的. 形如: <body>hello</body> 标签名 (body) 放到 < > 中 大部分标…...

安装配置 zookeeper(单机版)

目录 一 准备并解压安装包 二 修改zoo.cfg文件 三 创建相应两个目录 四 创建文件myid 五 修改环境变量 六 启动 zookeeper 一 准备并解压安装包 这里提供了网盘资源 http://链接: https://pan.baidu.com/s/1BybwSQ_tQUL23OI6AWxwFw?pwdd4cf 提取码: d4cf 这里的安装包是…...

2023/9/7 -- C++/QT

作业 1> 思维导图 2> 封装一个结构体&#xff0c;结构体中包含一个私有数组&#xff0c;用来存放学生的成绩&#xff0c;包含一个私有变量&#xff0c;用来记录学生个数&#xff0c; 提供一个公有成员函数&#xff0c;void setNum(int num)用于设置学生个数 提供一个…...

2023年09月IDE流行度最新排名

点击查看最新IDE流行度最新排名&#xff08;每月更新&#xff09; 2023年09月IDE流行度最新排名 顶级IDE排名是通过分析在谷歌上搜索IDE下载页面的频率而创建的 一个IDE被搜索的次数越多&#xff0c;这个IDE就被认为越受欢迎。原始数据来自谷歌Trends 如果您相信集体智慧&am…...

MyBatis基础之概念简介

文章目录 基本概念1. 关于 MyBatis2. MyBatis 的体系结构3. 使用 XML 构建 SqlSessionFactory4. SqlSession5. 默认的别名6. 补充 [注意] 放前面前 很多人可能在使用 MyBatis-plus 进行代码开发&#xff0c;MyBatis的这部分内容是用来更好的讲述之后的内容。 基本概念 1. 关于…...

解决 SQLyog 连接 MySQL8.0+ 报错:错误号码2058

文章目录 一、问题现象二、原因分析三、解决方案1. 方案1&#xff1a;更新SQLyog版本2. 方案2&#xff1a;修改用户的授权插件3. 方案3&#xff1a;修复my.cnf 或 my.ini配置文件 四、最后总结 本文将总结如何解决 SQLyog 连接 MySQL8.0 时报错&#xff1a;错误号码2058 一、问…...

Linux内核4.14版本——drm框架分析(11)——DRM_IOCTL_MODE_ADDFB2(drm_mode_addfb2)

目录 1. drm_mode_addfb2 2. drm_internal_framebuffer_create 3. drm_fb_cma_create->drm_gem_fb_create->drm_gem_fb_create_with_funcs 4. drm_gem_fb_alloc 4.1 drm_helper_mode_fill_fb_struct 4.2 drm_framebuffer_init 5. 调用流程图 书接上回&#xff0c;使…...

mysql的date_format()函数格式月份的坑

问题背景 我表中有个字段存的是“年-月”格式的字符串&#xff0c;格式是这样的&#xff1a;‘2023-08’ 在查询这个表数据时&#xff0c;我使用了如下sql语句&#xff1a; select * from car where date_format(car_start_month,%Y-%m)<2023-08 意思是查询 car_start_mo…...

保姆级式教程:教你制作电子画册

在这个数字化时代&#xff0c;电子画册成为了展示和分享作品的一种流行方式。制作一个精美的电子画册不仅可以展示你的创意和才华&#xff0c;还可以吸引更多人的关注和欣赏。下面告诉大家一些小步骤&#xff0c;带你一步步学习如何制作电子画册。 1.收集和整理作品 接下来&am…...

探究Nginx应用场景

1 静态资源 Nginx是一个流行的Web服务器和反向代理服务器&#xff0c;它可以用于托管静态资源。下面是一个简单的案例&#xff0c;展示了如何使用Nginx来提供静态资源。 假设你有一个名为example.com的域名&#xff0c;并且你希望使用Nginx来托管位于/var/www/html目录下的静…...

sklearn中的数据集使用

导库 from sklearn.datasets import load_iris 实现 # 加载数据集 iris load_iris() print(f查看数据集&#xff1a;{iris}) print(f查看数据集的特征&#xff1a;{iris.feature_names}) print(f查看数据集的标签&#xff1a;{iris.target_names}) print(f查看数据集的描述…...

LLM在电商推荐系统的探索与实践

本文对LLM推荐的结合范式进行了梳理和讨论&#xff0c;并尝试将LLM涌现的能力迁移应用在推荐系统之中&#xff0c;利用LLM的通用知识来辅助推荐&#xff0c;改善推荐效果和用户体验。 背景 电商推荐系统&#xff08;Recommend System&#xff0c;RecSys&#xff09;是一种基于用…...

Linux 文本操作指令

Linux操作系统提供了许多用于处理文本文件的命令和工具。以下是一些常用的Linux文本命令&#xff1a; cat&#xff1a; 用于查看文本文件的内容&#xff0c;也可以用于合并多个文件。 cat 文件名more和less&#xff1a; 用于逐页查看文本文件&#xff0c;特别是对于大型文件。 …...

GIS地图服务数据可视化

GIS地图服务数据可视化 OSM&#xff08;Open Street Map&#xff0c;开放街道地图&#xff09;Bing地图&#xff08;必应地图&#xff09;Google地图&#xff08;谷歌地图&#xff09; 地图服务数据可视化是根据调用的地图服务请求Web服务器端的地图数据&#xff0c;实现地图数…...

java 获取实体类的反射 Field用法(获取对象的字段名和属性值) 包含注解值 - 如何用枚举类映射获取数据库字段名

实体类映射数据库字段的设计思路 初始思路: 使用 java 的反射 Field 通过注解方法获取实体类属性的注解值,但是如果遇到不是标准的数据库映射的注解方法,那么就无法拿到对应的数据库映射字段名,所以这一点被笔者舍弃了。 什么是标准的映射注解方法,即导入方法后带 anno…...

css实现圆环展示百分比,根据值动态展示所占比例

代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...

反向工程与模型迁移:打造未来商品详情API的可持续创新体系

在电商行业蓬勃发展的当下&#xff0c;商品详情API作为连接电商平台与开发者、商家及用户的关键纽带&#xff0c;其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息&#xff08;如名称、价格、库存等&#xff09;的获取与展示&#xff0c;已难以满足市场对个性化、智能…...

AI Agent与Agentic AI:原理、应用、挑战与未来展望

文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例&#xff1a;使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例&#xff1a;使用OpenAI GPT-3进…...

iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版​分享

平时用 iPhone 的时候&#xff0c;难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵&#xff0c;或者买了二手 iPhone 却被原来的 iCloud 账号锁住&#xff0c;这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...

Android15默认授权浮窗权限

我们经常有那种需求&#xff0c;客户需要定制的apk集成在ROM中&#xff0c;并且默认授予其【显示在其他应用的上层】权限&#xff0c;也就是我们常说的浮窗权限&#xff0c;那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...

uniapp中使用aixos 报错

问题&#xff1a; 在uniapp中使用aixos&#xff0c;运行后报如下错误&#xff1a; AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...

实现弹窗随键盘上移居中

实现弹窗随键盘上移的核心思路 在Android中&#xff0c;可以通过监听键盘的显示和隐藏事件&#xff0c;动态调整弹窗的位置。关键点在于获取键盘高度&#xff0c;并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...

Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?

在大数据处理领域&#xff0c;Hive 作为 Hadoop 生态中重要的数据仓库工具&#xff0c;其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式&#xff0c;很多开发者常常陷入选择困境。本文将从底…...

LeetCode - 199. 二叉树的右视图

题目 199. 二叉树的右视图 - 力扣&#xff08;LeetCode&#xff09; 思路 右视图是指从树的右侧看&#xff0c;对于每一层&#xff0c;只能看到该层最右边的节点。实现思路是&#xff1a; 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...