当前位置: 首页 > news >正文

《动手学深度学习 Pytorch版》 6.1 从全连接层到卷积

6.1.1 不变性

  • 平移不变性(translation invariance):

    不管检测对象出现在图像中的哪个位置,神经网络的前面几层应该对相同的图像区域具有相似的反应,即为“平移不变性”。

  • 局部性(locality):

    神经网络的前面几层应该只探索输入图像中的局部区域,而不过度在意图像中相隔较远区域的关系,这就是“局部性”原则。最终,可以聚合这些局部特征,以在整个图像级别进行预测。

6.1.2 多层感知机的限制

假设多层感知机的输入是 X X X,将其隐藏表示记为 H H H(二者形状相同)。

使用 [ X ] i j [\boldsymbol{X}]_{ij} [X]ij [ H ] i j [\boldsymbol{H}]_{ij} [H]ij 表示位置 ( i , j ) (i,j) (i,j) 位置上的像素点。

因为每个像素点都需要和其他像素点联系,故每个像素点都需要一个二阶的权重张量,又由于是二维图像,故最终权重张量 W \mathrm{W} W 为四维。

再假设偏置参数为 U U U,则可以将全连接层表示为:

[ H ] i j = [ U ] i j + ∑ k ∑ l [ W ] i , j , k , l [ X ] k , l [\boldsymbol{H}]_{ij} = [\boldsymbol{U}]_{ij}+\sum_k\sum_l[\mathrm{W}]_{i,j,k,l}[\boldsymbol{X}]_{k,l} [H]ij=[U]ij+kl[W]i,j,k,l[X]k,l

为了方便表示,我们对下标 ( k , l ) (k,l) (k,l) 进行重新索引,使得 k = i + a , l = j + b k=i+a,l=j+b k=i+a,l=j+b,则可以得到重拍后的权重矩阵 [ V ] i , j , a , b = [ W ] i , j , i + a , j + b [V]_{i,j,a,b}=[\mathrm{W}]_{i,j,i+a,j+b} [V]i,j,a,b=[W]i,j,i+a,j+b

上式可表述为:

[ H ] i j = [ U ] i j + ∑ a ∑ b [ V ] i , j , a , b [ X ] i + a , j + b [\boldsymbol{H}]_{ij} = [\boldsymbol{U}]_{ij}+\sum_a\sum_b[\mathrm{V}]_{i,j,a,b}[\boldsymbol{X}]_{i+a,j+b} [H]ij=[U]ij+ab[V]i,j,a,b[X]i+a,j+b

  1. 平移不变性

    现在引入平移不变性,即检测对象在输入 X X X 中的平移应该仅导致隐藏表示 H H H 中的平移。简言之,无须每个像素都要独享一个二维权值张量,所有像素共享同一个即可,故权重张量降为二维即可。此时式子可以简化为:

    [ H ] i j = u + ∑ a ∑ b [ V ] a , b [ X ] i + a , j + b [\boldsymbol{H}]_{ij} = u+\sum_a\sum_b[\boldsymbol{V}]_{a,b}[\boldsymbol{X}]_{i+a,j+b} [H]ij=u+ab[V]a,b[X]i+a,j+b

    这就是所谓卷积,使用系数 [ V ] a , b [\boldsymbol{V}]_{a,b} [V]a,b ( i , j ) (i,j) (i,j) 附近的像素 ( i + a , j + b ) (i+a,j+b) (i+a,j+b) 进行加权得到 [ H ] i j [\boldsymbol{H}]_{ij} [H]ij

  2. 局部性

    对于上述的 a , b a,b a,b 不应该取太大,即范围不应太大,至少不应该是全图。故可将 ∣ a ∣ > Δ ∣ b ∣ > Δ \left|a\right|>\Delta \left|b\right|>\Delta a>Δb>Δ的范围设置为0(即不考虑范围外的影响)。故可将式子重写为:

    [ H ] i j = u + ∑ a Δ ∑ b Δ [ V ] a , b [ X ] i + a , j + b [\boldsymbol{H}]_{ij} = u+\sum_a^\Delta\sum_b^\Delta[\boldsymbol{V}]_{a,b}[\boldsymbol{X}]_{i+a,j+b} [H]ij=u+aΔbΔ[V]a,b[X]i+a,j+b

至此,可以称 V V V 为卷积核。简言之,卷积操作实际就是计算一圈像素对中间像素的影响,使用不同的卷积核则计算的是不同方面的影响,最终实现提取不同特征的效果。此处参考王木头大佬的视频《从“卷积”、到“图像卷积操作”、再到“卷积神经网络”,“卷积”意义的3次改变》。

6.1.3 卷积

在数学中,卷积被定义为:

( f ∗ g ) ( x ) = ∫ f ( z ) g ( x − z ) d z (f*g)(\boldsymbol{x})=\int f(\boldsymbol{z})g(\boldsymbol{x}-z)d\boldsymbol{z} (fg)(x)=f(z)g(xz)dz

用一个例子说明的话,一个不确定的输入函数叠加上一个确定的输出函数,计算最终余量即为卷积。

6.1.4 “沃尔多在哪里”回顾

上面一直将图片作为二维张量,实际上图像一般包含三个通道(即RGB三原色),因此图像应该是一个由高度、宽度和颜色组成的三维张量。故我们应将 X \boldsymbol{X} X 索引为 [ X ] i , j , k [\boldsymbol{X}]_{i,j,k} [X]i,j,k,由此卷积核相应的调整为 [ V ] a , b , c [\boldsymbol{V}]_{a,b,c} [V]a,b,c,再添加一个 d d d 以实现不同通道的输出,即:

[ H ] i , j , d = ∑ a = − Δ Δ ∑ b = − Δ Δ ∑ c [ V ] a , b , c , d [ X ] i + a , j + b , c [\boldsymbol{H}]_{i,j,d} = \sum_{a=-\Delta}^\Delta\sum_{b=-\Delta}^\Delta\sum_c[\boldsymbol{V}]_{a,b,c,d}[\boldsymbol{X}]_{i+a,j+b,c} [H]i,j,d=a=ΔΔb=ΔΔc[V]a,b,c,d[X]i+a,j+b,c

练习

(1)假设卷积层式(6.3),覆盖的局部区域 Δ = 0 \Delta=0 Δ=0。在这种情况下,证明卷积核为每组通道独立地实现一个全连接层。

Δ = 0 \Delta=0 Δ=0 则意味着卷积核大小为1,那感觉和全连接没区别的哇。


(2)为什么平移不变性可能也不是好主意呢?

太单一,也许不同区域需要的卷积核不一样。


(3)当从图像边界像素获取隐藏表示时,我们需要思考哪些问题?

应该考虑关于填充的事情。


(4)描述一个类似的音频卷积层的架构。

将音频信息转换为二维数据或更高维再进行卷积操作。


(5)卷积层也适合于文本数据吗?为什么?

我觉得可以,只要找到合适的方法数据化文本。因为卷积这种对于特征的提取对于自然语言也应该是适用的。


(6)证明在式(6.6)中, f ∗ g = g ∗ f f*g=g*f fg=gf

( f ∗ g ) ( x ) = ∫ f ( z ) g ( x − z ) d z = ∫ f ( x − t ) g ( t ) d ( x − t ) ( 令 t = x − z ) = ∫ g ( t ) f ( x − t ) d t = ( g ∗ f ) ( x ) \begin{align} (f*g)(\boldsymbol{x}) &= \int f(\boldsymbol{z})g(\boldsymbol{x-z})d\boldsymbol{z}\\ &= \int f(\boldsymbol{x-t})g(\boldsymbol{t})d\boldsymbol{(x-t)}\qquad(令 t=\boldsymbol{x-z})\\ &= \int g(\boldsymbol{t})f\boldsymbol{(x-t)}d\boldsymbol{t}\\ &= (g*f)(\boldsymbol{x}) \end{align} (fg)(x)=f(z)g(xz)dz=f(xt)g(t)d(xt)(t=xz)=g(t)f(xt)dt=(gf)(x)

相关文章:

《动手学深度学习 Pytorch版》 6.1 从全连接层到卷积

6.1.1 不变性 平移不变性(translation invariance): 不管检测对象出现在图像中的哪个位置,神经网络的前面几层应该对相同的图像区域具有相似的反应,即为“平移不变性”。 局部性(locality)&…...

六、数学建模之插值与拟合

1.概念 2.例题和matlab代码求解 一、概念 1.插值 (1)定义:插值是数学和统计学中的一种技术,用于估算在已知数据点之间的未知数据点的值。插值的目标是通过已知数据点之间的某种函数或方法来估计中间位置的数值。插值通常用于数…...

【项目经验】:elementui表格中数字汉字排序问题及字符串方法localeCompare()

一.需求 表格中数字汉字排序&#xff0c;数字按大小排列&#xff0c;汉字按拼音首字母&#xff08;A-Z&#xff09;排序。 二.用到的方法 第一步&#xff1a;把el-table-column上加上sortable"custom" <el-table-column prop"date" label"序号…...

Spring Boot的运行原理

Spring Boot的运行原理 Spring Boot是一个用于快速构建独立、可独立运行的Spring应用程序的框架。它通过自动配置和约定优于配置的原则&#xff0c;简化了Spring应用程序的开发过程。下面将详细介绍Spring Boot的运行原理&#xff0c;并附上一些代码解释。 1. 主要组件 Sprin…...

xen-gic初始化流程

xen-gic初始化流程 调试平台使用的是gic-600&#xff0c;建议参考下面的文档来阅读代码&#xff0c;搞清楚相关寄存器的功能。 《corelink_gic600_generic_interrupt_controller_technical_reference_manual_100336_0106_00_en》 《IHI0069H_gic_architecture_specification》…...

Docker从认识到实践再到底层原理(六-1)|Docker容器基本介绍+命令详解

前言 那么这里博主先安利一些干货满满的专栏了&#xff01; 首先是博主的高质量博客的汇总&#xff0c;这个专栏里面的博客&#xff0c;都是博主最最用心写的一部分&#xff0c;干货满满&#xff0c;希望对大家有帮助。 高质量博客汇总 然后就是博主最近最花时间的一个专栏…...

【Flink】FlinkCDC自定义反序列化器

在我们用FlinkCDC采集mysql数据(或其他数据源)的时候,FlinkCDC输出的格式不标准,不利于我们后续做数据处理,我们通常会使用自定义反序列化器来格式化采集数据方便后续处理 常规的反序列化器如下: public class FlinkDataStreamCDC {public static void main(String[] ar…...

linux基础(2)

目录 一.vi\vim编译器介绍1.三种模式2.vim的使用3.快捷键的使用 二.which&#xff0c;find命令三.grep命令四.wc命令五.管道符六.echo命令1.重定向符 七.tail命令 一.vi\vim编译器介绍 vim\vi是linux中最经典的文本编译器 同图形化界面中的文本编译器是一样的&#xff0c;vi是…...

docker安装zookeeper(单机版)

第一步&#xff1a;拉取镜像 docker pull zookeeper第二步&#xff1a;启动zookeeper docker run -d -e TZ"Asia/Shanghai" -p 2181:2181 -v /home/sunyuhua/docker/zookeeper:/data --name zookeeper --restart always zookeeper...

国际版阿里云/腾讯云免开户:云存储服务:云存储服务能够让你随时随地拜访和同享文件

云存储服务&#xff1a;云存储服务能够让你随时随地拜访和同享文件 云存储服务是一种基于云技术的存储渠道&#xff0c;能够让用户存储、管理和同享各种类型的数据文件&#xff0c;如文档、图片、视频、音频等。这种服务具有许多长处&#xff0c;以下是对其进行的详细分析&…...

【Java】应用层协议HTTP和HTTPS

HTTP和HTTPS协议 HTTPHTTP协议的工作过程HTTP协议格式抓包工具抓包结果 HTTP请求(Request)URL方法GET方法POST请求其他方法 报头(header)HostContent-lengthContent-TypeUser-AgentRefererCookie 正文(body) HTTP响应HTTP状态码响应报头(header)响应正文(body) 通过form表单构造…...

SpringBoot整合Flowable

1. 配置 &#xff08;1&#xff09; 引入maven依赖 <dependency><groupId>org.flowable</groupId><artifactId>flowable-spring-boot-starter</artifactId><version>6.7.2</version></dependency><!-- MySQL连接 -->&l…...

华为云香港S3云服务器性能测评_99元一年租用价格

华为云香港S3云服务器1核2G1M带宽99元一年性能测评&#xff0c;配置为S3云服务器1核2G1M带宽&#xff0c;S系列热卖机型&#xff0c;适用于个人建站、普通web应用等负载较低场景&#xff0c;系统盘为高IO40G系统盘&#xff0c;华为云百科分享华为云香港云服务器配置费用&#x…...

prompt 视频收集

1.ChatGPT Prompt提示词工程 ***** 常用技巧 &#xff08;基本原则&#xff0c;格式&#xff0c;角色扮演&#xff09;_哔哩哔哩_bilibili...

Rust :与C交互

rust调用C端的库函数&#xff0c;有很多方法。今天介绍通过cc库&#xff0c;通过build生成脚本的方式&#xff0c;实现rust调用c端库函数。 1、相关准备&#xff1a; 在ffi目录下&#xff0c;创建了c_part和rust_ffi文件夹。 c_part下放了ctools.c文件&#xff0c;里面有一些…...

模拟实现C语言--memcpy函数和memmove函数

模拟实现C语言–memcpy函数和memmove函数 文章目录 模拟实现C语言--memcpy函数和memmove函数一、memcpy函数和memmove函数1.1 memcpy函数是什么1.1 memmove函数是什么 二、使用示例2.1 从起始位置复制2.2 从任意位置复制 三、模拟实现3.1 模拟实现1--memcpy函数3.2 针对缺点改进…...

Linux目录

根目录 根目录&#xff1a;“/” 在Linux系统中&#xff0c;根目录指的是整个文件系统的最顶级目录&#xff0c;用符号"/"表示。根目录是文件系统的起点&#xff0c;所有其他目录和文件都嵌套在根目录下面。在根目录下通常会有一些常见的子目录&#xff0c;例如/bin…...

全国职业技能大赛云计算--高职组赛题卷①(私有云)

全国职业技能大赛云计算--高职组赛题卷①&#xff08;私有云&#xff09; 第一场次题目&#xff1a;OpenStack平台部署与运维任务1 基础运维任务&#xff08;5分&#xff09;任务2 OpenStack搭建任务&#xff08;15分&#xff09;任务3 OpenStack云平台运维&#xff08;15分&am…...

STM32--PWR电源控制

文章目录 PWR电源电源管理器上电复位&#xff08;POR&#xff09;和掉电复位&#xff08;PDR&#xff09; 可编程电压监测器&#xff08;PVD&#xff09;低功耗模式睡眠模式停止模式待机模式 睡眠模式工程停止模式待机模式 PWR STM32的PWR模块是其电源管理系统的核心部分&…...

vue+element-ui el-descriptions 详情渲染组件二次封装(Vue项目)

目录 1、需求 2.想要的效果就是由图一变成图二 ​编辑 3.组件集成了以下功能 4.参数配置 示例代码 参数说明 5,组件 6.页面使用 1、需求 一般后台管理系统&#xff0c;通常页面都有增删改查&#xff1b;而查不外乎就是渲染新增/修改的数据&#xff08;由输入框变成输…...

Nvme 协议第一章节学习

Nvme Express Base Specification 第一章 简介 1.1概述 NVM ExpressTM&#xff08;NVMeTM&#xff09;接口允许主机软件与非易失性存储器子系统通信。 此接口针对企业和客户端固态驱动器进行了优化&#xff0c;通常作为寄存器级接口连接到PCI Express接口。 注&#xff1a;在…...

三维模型3DTile格式轻量化压缩处理工具常用几款软件介绍

三维模型3DTile格式轻量化压缩处理工具常用几款软件介绍 三维模型3DTile格式的轻量化处理旨在减少模型的存储空间和提高渲染性能。以下是一些推荐的工具软件&#xff0c;可以用于实现这个目的&#xff1a; MeshLab&#xff1a;MeshLab是一个开源的三维模型处理软件&#xff0c…...

【工具篇】高级 TypeScript 案例

本文说明&#xff1a;TypeScript 相关文章&#xff0c;了解更多特性。 网页编辑器&#xff1a; https://www.typescriptlang.org/zh/play 文章目录 TypeScript联合类型交叉类型装饰器混入 mixin泛型Promise 简单应用 TypeScript 联合类型 概念&#xff1a;当某个函数只有一个参…...

利用Python将dataframe格式的所有列的数据类型转换为分类数据类型

一、样例理解 import pandas as pd import numpy as np# 创建测试数据 feature_names [col1 , col2, col3, col4, col5, col6] values np.random.randint(20, size(10,6))dataset pd.DataFrame(data values, columns feature_names)print("转换前的数据为\n",d…...

安全线程的集合

1. CopyOnWriteArrayList package com.kuang.unsafe;import java.util.*; import java.util.concurrent.CopyOnWriteArrayList;//java.util.ConcurrentModificationException 并发修改异常&#xff01; 因为List集合线程不安全&#xff01; public class ListTest {public st…...

用GoConvey编写单元测试的一些总结

一、尽量用Convey将所有测试用例的Convey汇总 用Convey嵌套的方法&#xff0c;将所有测试用例的Convey用一个大的Convey包裹起来&#xff0c;每个测试函数下只有一个大的Convey。比如下面的示例代码&#xff1a; import ("testing". "github.com/smartystreet…...

Linux Arm64修改页表项属性

文章目录 前言一、获取pte1.1 pgd_offset1.2 pud_offset1.3 pmd_offset1.4 pte_offset_kernel 二、修改pte属性2.1 set/clear_pte_bit2.2 pte_wrprotect2.3 pte_mkwrite2.4 pte_mkclean2.5 pte_mkdirty 三、set_pte_at四、__flush_tlb_kernel_pgtable五、demo参考资料 前言 在…...

elasticsearch14-高亮

个人名片&#xff1a; 博主&#xff1a;酒徒ᝰ. 个人简介&#xff1a;沉醉在酒中&#xff0c;借着一股酒劲&#xff0c;去拼搏一个未来。 本篇励志&#xff1a;三人行&#xff0c;必有我师焉。 本项目基于B站黑马程序员Java《SpringCloud微服务技术栈》&#xff0c;SpringCloud…...

HUAWEI华为MateBook X Pro 2021款 i7 集显(MACHD-WFE9Q)原装出厂Win10系统20H2

华为笔记本电脑原厂系统自带指纹驱动、显卡驱动、声卡驱动、网卡驱动等所有驱动、出厂主题壁纸、系统属性华为专属LOGO标志、Office办公软件、华为电脑管家等预装程序 链接&#xff1a;https://pan.baidu.com/s/1oeSM0ciwyyRIKms5tR4SNA?pwdo2gq 提取码&#xff1a;o2gq...

21天学会C++:Day9----初识类与对象

CSDN的uu们&#xff0c;大家好。这里是C入门的第九讲。 座右铭&#xff1a;前路坎坷&#xff0c;披荆斩棘&#xff0c;扶摇直上。 博客主页&#xff1a; 姬如祎 收录专栏&#xff1a;C专题 目录 1. 面向过程与面向对象 2. 类的定义 3. 类中的访问限定符 3.1 访问限定符的…...

做网站贵/东莞网站到首页排名

免费帮大家发布招聘需求&#xff0c;如有需要可在微信上与我联系~地点&#xff1a;南京岗位&#xff1a;数据分析 & 数据开发经验要求&#xff1a;本科3年左右&#xff0c;研究生1年左右薪资&#xff1a;13-18K技能要求&#xff1a;数据开发【熟悉Java&#xff0c;了解大数…...

网站建设的销售怎么做/重庆网络seo公司

https://www.tiolive.com/nexedi/web_site_module/erp5_community/javascript-JQuery.SPA转载于:https://www.cnblogs.com/nbalive2001/archive/2013/03/13/2957702.html...

求西北地区网站建设专家 西安沉睡网络 官方网址?/流量平台

FluentIterable 是guava集合类中常用的一个类&#xff0c;主要用于过滤、转换集合中的数据&#xff1b;FluentIterable是一个抽象类&#xff0c;实现了Iterable接口&#xff0c;大多数方法都返回FluentIterable对象&#xff0c;这也是guava的思想之一。 transform&#xff1a;对…...

深圳自助网站建设费用/seo公司费用

文章目录1. UDP协议UDP报文格式UDP校验过程1. UDP协议 UDP只在IP数据报服务之上增加了很少功能&#xff0c;即复用分用和差错检测功能。 UDP的主要特点: UDP是无连接的&#xff0c;减少开销和发送数据之前的时延。 UDP使用最大努力交付&#xff0c;即不保证可靠交付。 UDP是…...

免费做网站手机软件/手机清理优化软件排名

《纽约时报》的讣告专栏&#xff0c;今天报道了计算机科学先驱之一、FORTRAN之父、1977年图灵奖得主、BNF&#xff08;巴克斯-诺尔范式&#xff09;的发明者之一、美国科学院院士和工程院院士、John W. Backus&#xff08;1924.12.3-2007.3.20&#xff09;逝世的消息。他的图灵…...

开发网站用php还是jsp/今日新闻摘抄50字

程序计数器 (Program Counter Register) 内存空间小&#xff0c;线程私有。字节码解释器工作是就是通过改变这个计数器的值来选取下一条需要执行指令的字节码指令&#xff0c;分支、循环、跳转、异常处理、线程恢复等基础功能都需要依赖计数器完成。 如果线程正在执行一个 Ja…...