DMNet复现(一)之数据准备篇:Density map guided object detection in aerial image
一、生成密度图
密度图标签生成
采用以下代码,生成训练集密度图gt:
import cv2
import glob
import h5py
import scipy
import pickle
import numpy as np
from PIL import Image
from itertools import islice
from tqdm import tqdm
from matplotlib import pyplot as plt
from sortedcontainers import SortedDict
from scipy.ndimage.filters import gaussian_filter
from scipy.spatial import KDTree
import argparse"""
Code for DMnet, density map ground truth generation
Author: Changlin Li
Code revised on : 7/15/2020Given dataset(train/val/test) generate ground truth for given dataset.
Default format for source data: The input images are in jpg format and raw annotations are in txt format
(Based on Visiondrone 2018/19/20 dataset)Sample code to run:python Generate_density_map_official.py . gaussian_kernels.pkl distances_dict.pkl --mode val
"""# point_class_pair = {}
# annotation_stats = {0: 17, 1: 14, 2: 20, 3: 32, 4: 35, 5: 45, 6: 29, 7: 30, 8: 46, 9: 18}
# min_sigma, max_sigma = min(annotation_stats.values()), max(annotation_stats.values())
# print(min_sigma, max_sigma)def get_img_paths(path_sets):"""Return all images from all pathes in 'path_sets'"""img_paths = []for path in path_sets:for img_path in glob.glob(os.path.join(path, '*.jpg')):img_paths.append(img_path)return img_pathsdef save_computed_density(density_map, out_path):"""Save density map to h5py format"""with h5py.File(out_path, 'w') as hf:hf['density'] = density_mapdef compute_sigma(gt_count, distance=None, min_sigma=1, method=1, fixed_sigma=15):"""Compute sigma for gaussian kernel with different methods :* method = 1 : sigma = (sum of distance to 3 nearest neighbors) / 10* method = 2 : sigma = distance to nearest neighbor* method = 3 : sigma = fixed value** if sigma lower than threshold 'min_sigma', then 'min_sigma' will be used** in case of one point on the image sigma = 'fixed_sigma'"""if gt_count > 1 and distance is not None:if method == 1:sigma = np.mean(distance[1:4]) * 0.1elif method == 2:sigma = distance[1]elif method == 3:sigma = fixed_sigmaelse:sigma = fixed_sigmaif sigma < min_sigma:sigma = min_sigmareturn sigmadef find_closest_key(sorted_dict, key):"""Find closest key in sorted_dict to 'key'"""keys = list(islice(sorted_dict.irange(minimum=key), 1))keys.extend(islice(sorted_dict.irange(maximum=key, reverse=True), 1))return min(keys, key=lambda k: abs(key - k))def gaussian_filter_density(non_zero_points, map_h, map_w, distances=None, kernels_dict=None, min_sigma=2, method=1,const_sigma=15):"""Fast gaussian filter implementation : using precomputed distances and kernels"""gt_count = non_zero_points.shape[0]density_map = np.zeros((map_h, map_w), dtype=np.float32)for i in range(gt_count):point_x, point_y, category = non_zero_points[i]sigma = compute_sigma(gt_count, distances[i], min_sigma=min_sigma, method=method, fixed_sigma=const_sigma)# closest_sigma = annotation_stats[category]closest_sigma = find_closest_key(kernels_dict, sigma)# print(i,closest_sigma)kernel = kernels_dict[closest_sigma]full_kernel_size = kernel.shape[0]kernel_size = full_kernel_size // 2min_img_x = max(0, point_x - kernel_size)min_img_y = max(0, point_y - kernel_size)max_img_x = min(point_x + kernel_size + 1, map_w - 1)max_img_y = min(point_y + kernel_size + 1, map_h - 1)assert max_img_x > min_img_xassert max_img_y > min_img_ykernel_x_min = kernel_size - point_x if point_x <= kernel_size else 0kernel_y_min = kernel_size - point_y if point_y <= kernel_size else 0kernel_x_max = kernel_x_min + max_img_x - min_img_xkernel_y_max = kernel_y_min + max_img_y - min_img_yassert kernel_x_max > kernel_x_minassert kernel_y_max > kernel_y_mindensity_map[min_img_y:max_img_y, min_img_x:max_img_x] += kernel[kernel_y_min:kernel_y_max,kernel_x_min:kernel_x_max]return density_mapdef get_gt_dots(ann_path, img_height, img_width, mode="train"):"""Load Matlab file with ground truth labels and save it to numpy array.** cliping is needed to prevent going out of the array"""txt_list = open(ann_path, 'r').readlines()gt = format_label(mode, txt_list)assert gt.shape[1] == 3gt[:, 0] = gt[:, 0].clip(0, img_width - 1)gt[:, 1] = gt[:, 1].clip(0, img_height - 1)return gtdef set_circles_on_img(image, bbox_list, circle_size=2):"""Set circles on images at centers of bboxes in bbox_list"""for bbox in bbox_list:cv2.circle(image, (bbox[0], bbox[1]), circle_size, (255, 0, 0), -1)return imagedef generate_gaussian_kernels(out_kernels_path='gaussian_kernels.pkl', round_decimals=3, sigma_threshold=4, sigma_min=0,sigma_max=20, num_sigmas=801):"""Computing gaussian filter kernel for sigmas in linspace(sigma_min, sigma_max, num_sigmas) and saving them to dict. """if os.path.exists(out_kernels_path):# If kernel has been pre-computed, then returnprint("Kernel already created!\nExiting...\n")returnkernels_dict = dict()sigma_space = np.linspace(sigma_min, sigma_max, num_sigmas)for sigma in tqdm(sigma_space):sigma = np.round(sigma, decimals=round_decimals)kernel_size = np.ceil(sigma * sigma_threshold).astype(np.int)img_shape = (kernel_size * 2 + 1, kernel_size * 2 + 1)img_center = (img_shape[0] // 2, img_shape[1] // 2)arr = np.zeros(img_shape)arr[img_center] = 1arr = scipy.ndimage.filters.gaussian_filter(arr, sigma, mode='constant')kernel = arr / arr.sum()kernels_dict[sigma] = kernelprint(f'Computed {len(sigma_space)} gaussian kernels. Saving them to {out_kernels_path}')with open(out_kernels_path, 'wb') as f:pickle.dump(kernels_dict, f)def compute_distances(out_dist_path='distances_dict.pkl', raw_label_dir='D:/BaiduNetdiskDownload/VisDrone', n_neighbors=4,leafsize=1024, data_limit=None, mode="train", img_affix=".jpg"):if os.path.exists(out_dist_path):# If distance has been computed, then directly load distance file.print("Distrance pre-computation already created!\nExiting...\n")returndistances_dict = dict()full_img_paths = glob.glob(f'{raw_label_dir}/VisDrone2019-DET-train/images/*' + img_affix) + \glob.glob(f'{raw_label_dir}/VisDrone2019-DET-val/images/*' + img_affix) + \glob.glob(f'{raw_label_dir}/VisDrone2019-DET-test-dev/images/*' + img_affix)if data_limit and data_limit < len(full_img_paths):full_img_paths = full_img_paths[:data_limit]for img_path in tqdm(full_img_paths):ann_path = img_path.replace(img_affix, '.txt')ann_path = ann_path.replace("images", "annotations")img = plt.imread(img_path)non_zero_points = get_gt_dots(ann_path, *img.shape[0:2], mode=mode)tree = KDTree(non_zero_points.copy(), leafsize=leafsize) # build kdtreedistances, _ = tree.query(non_zero_points, k=n_neighbors) # query kdtreedistances_dict[img_path] = distancesprint(f'Distances computed for {len(full_img_paths)}. Saving them to {out_dist_path}')with open(out_dist_path, 'wb') as f:pickle.dump(distances_dict, f)def format_label(mode, txt_list):format_data = []# required format: xmin, ymin, xmax, ymax, class_id, clockwise direction# Given format: <bbox_left>,<bbox_top>,<bbox_width>,<bbox_height>,class_idfor idx, i in enumerate(txt_list):coord_raw = [int(x) for x in i.replace("\n", "").split(',') if len(x) != 0]coord = coord_raw[:6]# print(coord)if len(coord) != 6:# 4 coord + 1 classprint("Failed to parse annotation!")exit()# if coord[-1] not in class_list and coord[-1]>len(class_list):# print('warning found a new label :', coord[-1])# exit()if coord[2] <= 0 or coord[3] <= 0:print("Error encountered!\nFind out 0 height(width)!")print("This bounding box has been discarded! ")continue# print("Pull out corrd matrix:\n")# print(coord)# exit(-1)if not 0 < coord[-1] < 11:# class 0 and 11 are not in our interestcontinueif mode == "VisDrone2019-DET-val" or "VisDrone2019-DET-test":# in this case, score is the last 2 element.# No consideration for score 0 in evalif int(coord[-2]) == 0:continueif int(coord_raw[-2]) == 2:continuebbox_left, bbox_top = coord[0], coord[1]bbox_right, bbox_bottom = coord[0] + coord[2], coord[1] + coord[3]# Scale class number back to range 0-9center_x, center_y = int((bbox_left + bbox_right) * 0.5), int((bbox_top + bbox_bottom) * 0.5)format_data.append([center_x, center_y, coord[-1] - 1])# if not filename:# continue# if filename not in point_class_pair:# point_class_pair[filename] = {}# coord_pair = str(center_x) + " " + str(center_y)# if coord_pair not in point_class_pair[filename]:# point_class_pair[filename][coord_pair] = coord[-1] - 1# else:# if point_class_pair[filename][coord_pair] != coord[-1] - 1:# assert True, \# "duplicate coordination shows in current file : " + str(filename)return np.array(format_data)def parse_args():parser = argparse.ArgumentParser(description='DMNet--Density map ground truth generation')parser.add_argument('root_dir', default=".",help='the path for source data')parser.add_argument('precomputed_kernels_path', default="gaussian_kernels.pkl",help='the path to save precomputed kernels')parser.add_argument('precomputed_distances_path', default="distances_dict.pkl",help='the path to save precomputed distance')parser.add_argument('--image_prefix', default=".jpg", help='the path to save precomputed distance')parser.add_argument('--mode', default="train", help='Indicate if you are working on train/val/test set')parser.add_argument('--showden', action='store_true', help='show results')args = parser.parse_args()return argsif __name__ == "__main__":# General setupargs = parse_args()data_limit = Noneprecomputed_kernels_path = args.precomputed_kernels_pathprecomputed_distances_path = args.precomputed_distances_pathimg_affix = args.image_prefixshowden = args.showdenmode = args.moderoot_dir = args.root_dirmin_sigma = 0max_sigma = 20# create dir to save train/val density mapif not os.path.exists(os.path.join('/root/autodl-tmp/VisDrone2019/VisDrone2019-DET-train', 'dens')):os.makedirs(os.path.join('/root/autodl-tmp/VisDrone2019/VisDrone2019-DET-train', 'dens'), exist_ok=True)if not os.path.exists(os.path.join('/root/autodl-tmp/VisDrone2019/VisDrone2019-DET-val', 'dens')):os.makedirs(os.path.join('/root/autodl-tmp/VisDrone2019/VisDrone2019-DET-val', 'dens'), exist_ok=True)if not os.path.exists(os.path.join('/root/autodl-tmp/VisDrone2019/VisDrone2019-DET-test-dev', 'dens')):os.makedirs(os.path.join('/root/autodl-tmp/VisDrone2019/VisDrone2019-DET-test-dev', 'dens'), exist_ok=True)# create pre-computed kernel to speed up density map generationgenerate_gaussian_kernels(precomputed_kernels_path, round_decimals=3, sigma_threshold=4,sigma_min=min_sigma, sigma_max=max_sigma, num_sigmas=801)with open(precomputed_kernels_path, 'rb') as f:kernels_dict = pickle.load(f)kernels_dict = SortedDict(kernels_dict)# uncomment to generate and save dict with distancescompute_distances(out_dist_path=precomputed_distances_path, raw_label_dir=root_dir, mode=mode)with open(precomputed_distances_path, 'rb') as f:distances_dict = pickle.load(f)# print(distances_dict)data_root = modeimg_paths = glob.glob(f'{root_dir}/{data_root}/images/*.jpg')method = 3const_sigma = 15with open(str(mode) + ".txt", "w") as fileloader:# Prepared for the training algorithms that requires a txt output file# with all input images listedfor img_path in tqdm(img_paths):fileloader.write(img_path)fileloader.write("\n")data_folder, img_sub_path = img_path.split('images')ann_path = img_path.replace(img_affix, '.txt')ann_path = ann_path.replace("images", 'annotations')# load img and gtimg = Image.open(img_path)# print(img_path)width, height = img.sizegt_points = get_gt_dots(ann_path, height, width, mode=mode)distances = distances_dict[img_path]density_map = gaussian_filter_density(gt_points, height, width, distances,kernels_dict, min_sigma=min_sigma, method=method,const_sigma=const_sigma)den_name = os.path.join(root_dir, data_root, "dens", img_path.split("/")[-1].replace("jpg", "npy"))print(den_name)if showden:plt.imshow(img)plt.imshow(density_map, alpha=0.75)plt.show()else:np.save(den_name, density_map)
使用以下命令进行创建:
# 生成训练集gt密度图
python image_cropping/Generate_density_map_official.py /root/autodl-tmp/VisDrone2019 gaussian_kernels.pkl distances_dict.pkl --mode VisDrone2019-DET-train
# 生成验证集gt密度图
python image_cropping/Generate_density_map_official.py /root/autodl-tmp/VisDrone2019 gaussian_kernels.pkl distances_dict.pkl --mode VisDrone2019-DET-val
# 生成测试集gt密度图
python image_cropping/Generate_density_map_official.py /root/autodl-tmp/VisDrone2019 gaussian_kernels.pkl distances_dict.pkl --mode VisDrone2019-DET-test-dev
在以上文件夹 生成了如下的dens文件夹 保存了密度图的npy文件。
密度图预测
根据官方仓库说明 下载MCNN代码 进行训练预测即可
裁剪区域
# 生成训练集
python image_cropping/density_slide_window_official.py /root/autodl-tmp/VisDrone2019 70_70 0.08 --output_folder /root/autodl-tmp/VisDrone2019/Crop_70_0.08 --mode VisDrone2019-DET-train
# 生成验证集
python image_cropping/density_slide_window_official.py /root/autodl-tmp/VisDrone2019 70_70 0.08 --output_folder /root/autodl-tmp/VisDrone2019/Crop_70_0.08 --mode VisDrone2019-DET-val# 生成测试集
python image_cropping/density_slide_window_official.py /root/autodl-tmp/VisDrone2019 70_70 0.08 --output_folder /root/autodl-tmp/VisDrone2019/Crop_70_0.08 --mode VisDrone2019-DET-test-dev
部分切分后的效果图,可以看到部分目标还是存在截断现象,是一个优化点。
由于不清楚是否会将crop后的图像与标签,用于到训练过程中,这里我就不生成训练的crop图和标签了,下一步准备直接用训练好的模型进行融合测试。论文是采用验证集进行测试的,这儿我准备把验证集和测试集(test-dev)都测试一遍。
最后按以下结构需要组织一下文件
最后我的目录结构如下
数据格式转换
需要先把txt转为voc,再把voc转为coco
# 生成测试集的voc格式
python fusion_detection/create_VOC_annotation_official.py /root/autodl-tmp/VisDrone2019 --output_folder VisDrone2019_finally --mode VisDrone2019-DET-test-dev
# 生成测试集的coco格式
python fusion_detection/VOC2coco_official.py /root/autodl-tmp/VisDrone2019/VisDrone2019_finally --mode VisDrone2019-DET-test-dev
这过程太耗时间了。最后把中间文件夹删除,整个格式如以下:
其中coco的json文件在以下位置
过程太繁琐了。
有需要生成后的数据,可以联系!
相关文章:

DMNet复现(一)之数据准备篇:Density map guided object detection in aerial image
一、生成密度图 密度图标签生成 采用以下代码,生成训练集密度图gt: import cv2 import glob import h5py import scipy import pickle import numpy as np from PIL import Image from itertools import islice from tqdm import tqdm from matplotli…...
k8s相关命令-命名空间
k8s相关命令目录 文章目录 前言一、创建命名空间二、删除命名空间三、查看命名空间列表四、查看命名空间列表五、查看特定命名空间下所有资源六、删除特定命名空间下所有资源 前言 记录k8s命名空间的相关操作命令 一、创建命名空间 kubectl create namespace <namespace&g…...

CG Magic分享同一场景里下,VR渲染器和CR渲染器哪个好?
渲染操作时,VR渲染器和CR渲染器的对比成为常见问题了。这个问题很多人都会问。 今天CG Magic小编通过一个真实的项目,就是同一场景下来比较一下VR渲染器和CR渲染器的区别。 以下图为例是用来测试的场景当年的最终图。采用了当年的一个伊丽莎白大街152号的…...

Hive工作原理
Hive 工作原理详解-阿里云开发者社区 Hive的服务端组件 1. Driver组件:该组件包括:Compiler、Optimizer、Executor,它可以将Hive的编译、解析、优化转化为MapReduce任务提交给Hadoop1中的JobTracker或者是Hadoop2中的SourceManager来进行实际的执行相应…...
vue 使用this.$set设置对象属性值时,不更新试图
vue 使用this.$set设置对象属性值时,不更新试图。 后来发现是因为若对象中存在该属性时,只更新值,不添加响应监测。 //vue/src/core/observer/index.js 源码片段/*** Set a property on an object. Adds the new property and* triggers ch…...

uniapp视频播放功能
UniApp提供了多种视频播放组件,包括视频播放器(video)、多媒体组件(media)、WebView(内置Video标签)等。其中,video和media组件是最常用的。 video组件 video组件是基于HTML5 vide…...
Java面向对象七大原则以及设计模式单例模式和工厂模式简单工厂模式
面向对象的七大原则(OOP) 1,开闭原则: 对扩展开发,对修改关闭 2.里氏替换原则: 继承必须确保超类所拥有的子类的性质在子类中仍然成立 3.依赖倒置原则: 面向接口编程,不要面向实现编程&am…...

Linux 遍历目录(cd 命令)
Linux 遍历目录(cd 命令) 文章目录 Linux 遍历目录(cd 命令)一、cd 命令二、绝对文件路径三、相对文件路径 一、cd 命令 在 Linux 文件系统上,可以使用 cd 命令将 shell 会话切换到另一个目录。cd 命令的格式也很简单…...

整合Nginx实现反向代理
针对后端启动多个服务,接口需要统一请求路径时,可以使用nginx进行请求地址反向代理。 1.下载: nginx 2.下载完成后解压,找到配置文件nginx.conf(在解压文件的conf目录中),在http中增加以下示例代码&#x…...
Linux:IP转INT详解
一、IP地址介绍 IP地址(Internet Protocol Address)是指互联网协议地址,是所有连接到网络设备的唯一标识符。IP地址由32位二进制数表示,通常以四段十进制数(每个数值范围为0-255)表示,例如192.1…...

43.MQ—RabbitMQ
目录 一、MQ—RabbitMQ。 (1)同步调用与异步调用。 (1.1)同步调用。 (1.2)异步调用。 (2)MQ之间的区别。 (3)RabbitMQ学习。 (3.1…...
Leetcode154. 寻找旋转排序数组中的最小值(存在重复元素)
力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台 已知一个长度为 n 的数组,预先按照升序排列,经由 1 到 n 次 旋转 后,得到输入数组。例如,原数组 nums [0,1,4,4,5,6,7] 在变化后可能得到:…...
docker查看镜像的latest对应的具体版本
查询容器镜像时,TAG只显示latest,而不是显示具体的版本号 docker images # 显示内容 REPOSITORY TAG IMAGE ID CREATED SIZE nginx latest 605c77e624dd 20 months ago 141MB redis latest 7614ae945…...

RabbitMQ深入 —— 死信队列
前言 前面荔枝梳理了RabbitMQ中的普通队列、交换机以及相关的知识,在这篇文章中荔枝将会梳理RabbitMQ的一个重要的队列 —— 死信队列,主要了解消息流转到死信队列的三种的方式以及相应的实现demo。希望能帮助到有需要的小伙伴~~~ 文章目录 前言 死信队…...
【React + Umi】自定义离开页面拦截弹框事件
在 react umi 中对离开页面的行为进行自定义弹窗拦截控制。以下为可选的方案分析。 wrapper 首先,因为项目框架是 umi,最先想到了 umi 路由的 wrapper 装饰器,但仔细一想又不太对, wrapper 争对于跳转到某个特定页面的前置行为…...

S1FD40A180H-ASEMI快恢复二极管S1FD40A180H
编辑:ll S1FD40A180H-ASEMI快恢复二极管S1FD40A180H 型号:S1FD40A180H 品牌:ASEMI 封装:TO-247 特性:大功率、快恢复二极管 正向电流:40A 反向耐压:1800V 恢复时间:<300n…...

网络编程 day1
1->x.mind网络编程基础 2->简述字节序的概念,并用共用体(联合体)的方式计算本机的字节序 1.字节序是指不同类型的CPU主机,内存存储多字节整数序列的方式 2.小端字节序:低序字节存储在低地址上 3.大端字节序&a…...

《深入PostgreSQL的存储引擎:原理与性能》
🌷🍁 博主猫头虎(🐅🐾)带您 Go to New World✨🍁 🐅🐾猫头虎建议程序员必备技术栈一览表📖: 🛠️ 全栈技术 Full Stack: 📚…...

python开发之个微群聊机器人的开发
简要描述: 退出群聊 请求URL: http://域名地址/quitChatRoom 请求方式: POST 请求头Headers: Content-Type:application/jsonAuthorization:login接口返回 参数: 参数名必选类型说明wI…...

【Redis7】--4.事务、管道、发布和订阅
文章目录 事务1.Redis事务2.Redis事务特性3.Redis事务命令3.1MULTI3.2EXEC3.3DISCARD3.4WATCH3.5UNWATCH 4.不保证原子性4.1"全体连坐"4.2"冤头债主" 5.事务执行流程 管道1.pipeline的使用2.pipeline小总结 发布和订阅1.常用命令1.1SUBSCRIBE1.2PUBLISH1.3…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析
1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具,该工具基于TUN接口实现其功能,利用反向TCP/TLS连接建立一条隐蔽的通信信道,支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式,适应复杂网…...

业务系统对接大模型的基础方案:架构设计与关键步骤
业务系统对接大模型:架构设计与关键步骤 在当今数字化转型的浪潮中,大语言模型(LLM)已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中,不仅可以优化用户体验,还能为业务决策提供…...

【JavaEE】-- HTTP
1. HTTP是什么? HTTP(全称为"超文本传输协议")是一种应用非常广泛的应用层协议,HTTP是基于TCP协议的一种应用层协议。 应用层协议:是计算机网络协议栈中最高层的协议,它定义了运行在不同主机上…...
Leetcode 3577. Count the Number of Computer Unlocking Permutations
Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接:3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯,要想要能够将所有的电脑解锁&#x…...
django filter 统计数量 按属性去重
在Django中,如果你想要根据某个属性对查询集进行去重并统计数量,你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求: 方法1:使用annotate()和Count 假设你有一个模型Item,并且你想…...
linux 下常用变更-8
1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行,YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID: YW3…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...
A2A JS SDK 完整教程:快速入门指南
目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库ÿ…...

打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用
一、方案背景 在现代生产与生活场景中,如工厂高危作业区、医院手术室、公共场景等,人员违规打手机的行为潜藏着巨大风险。传统依靠人工巡查的监管方式,存在效率低、覆盖面不足、判断主观性强等问题,难以满足对人员打手机行为精…...
为什么要创建 Vue 实例
核心原因:Vue 需要一个「控制中心」来驱动整个应用 你可以把 Vue 实例想象成你应用的**「大脑」或「引擎」。它负责协调模板、数据、逻辑和行为,将它们变成一个活的、可交互的应用**。没有这个实例,你的代码只是一堆静态的 HTML、JavaScript 变量和函数,无法「活」起来。 …...