当前位置: 首页 > news >正文

[pai-diffusion]pai的easynlp的clip模型训练

EasyNLP带你玩转CLIP图文检索 - 知乎作者:熊兮、章捷、岑鸣、临在导读随着自媒体的不断发展,多种模态数据例如图像、文本、语音、视频等不断增长,创造了互联网上丰富多彩的世界。为了准确建模用户的多模态内容,跨模态检索是跨模态理解的重要任务,…icon-default.png?t=N7T8https://zhuanlan.zhihu.com/p/528476134

initialize_easynlp()->train_dataset = CLIPDataset(pretrained_model_name_or_path=get_pretrain_model_path("alibaba-pai/clip_chinese_roberta_base_vit_base"),data_file="MUGE_MR_train_base64_part.tsv",max_seq_length=32,input_schema="text:str:1,image:str:1",first_sequence="text",second_sequence="image",is_training=True)
valid_dataset = CLIPDataset()model = get_application_model(app_name='clip',...)
- easynlp.appzoo.api.ModelMapping->CLIPApp
- easynlp.appzoo.clip.model.py->CLIPApp
- CHINESE_CLIP->
- self.visual = VisualTransformer()
- self.bert = BertModel()trainer = Trainer(model,train_dataset,user_defined_parameters,  evaluator=get_application_evaluator(app_name="clip",valid_dataset=valid_dataset,user_defined_parameters=user_defined_parameters,eval_batch_size=32))trainer.train()
- for _epoch in range(self._first_epoch,int(args.epoch_num)):for _step,batch in enumerate(self._train_loader):    label_ids = batch.pop()forward_outputs = self._model(batch)loss_dict = self.model_module.compute_loss(forward_outputs,label_ids)_loss = loss_dict('loss')_loss.backward()model = get_application_model_evaluation()
evaluator = get_application_evaluator()
evaluator.evaluate(model)

数据处理:

import os
import base64
import multiprocessing
from tqdm import tqdmdef process_image(image_path):# 从图片路径中提取中文描述image_name = os.path.basename(image_path)description = os.path.splitext(image_name)[0]# 将图片转换为 Base64 编码with open(image_path, 'rb') as f:image_data = f.read()base64_data = base64.b64encode(image_data).decode('utf-8')return description, base64_datadef generate_tsv(directory):image_paths = [os.path.join(directory, filename) for filename in os.listdir(directory) iffilename.endswith(('.jpg', '.png'))]with multiprocessing.Pool() as pool, tqdm(total=len(image_paths), desc='Processing Images') as pbar:results = []for result in pool.imap_unordered(process_image, image_paths):results.append(result)pbar.update(1)with open('/home/image_team/image_team_docker_home/lgd/e_commerce_sd/data/vcg_furnitures_text_image/vcg_furnitures_train.tsv','w', encoding='utf-8') as f:for description, base64_data in results:line = f"{description}\t{base64_data}\n"f.write(line)if __name__ == '__main__':target_directory = "/home/image_team/image_team_docker_home/lgd/e_commerce_sd/data/vcg_furnitures_text_image/vcg_furnitures_train/img_download/"# import pdb;pdb.set_trace()generate_tsv(target_directory)

训练代码:

import torch.cuda
from easynlp.appzoo import CLIPDataset
from easynlp.appzoo import get_application_predictor, get_application_model, get_application_evaluator, \get_application_model_for_evaluation
from easynlp.core import Trainer, PredictorManager
from easynlp.utils import initialize_easynlp, get_args, get_pretrain_model_path
from easynlp.utils.global_vars import parse_user_defined_parametersdef main():# /root/.easynlp/modelzoo中train_dataset = CLIPDataset(pretrained_model_name_or_path=get_pretrain_model_path(args.pretrained_model_name_or_path),data_file=args.tables.split(",")[0],max_seq_length=args.sequence_length,input_schema=args.input_schema,first_sequence=args.first_sequence,second_sequence=args.second_sequence,is_training=True)valid_dataset = CLIPDataset(# 预训练模型名称路径,这里我们使用封装好的get_pretrain_model_path函数,来处理模型名称"alibaba-pai/clip_chinese_roberta_base_vit_base"以得到其路径,并自动下载模型pretrained_model_name_or_path=get_pretrain_model_path(args.pretrained_model_name_or_path),data_file=args.tables.split(",")[-1],# "data/pai/MUGE_MR_valid_base64_part.tsv"max_seq_length=args.sequence_length,  # 文本最大长度,超过将截断,不足将paddinginput_schema=args.input_schema,  # 输入tsv数据的格式,逗号分隔的每一项对应数据文件中每行以\t分隔的一项,每项开头为其字段标识,如label、sent1等first_sequence=args.first_sequence,  # 用于说明input_schema中哪些字段作为第一/第二列输入数据second_sequence=args.second_sequence,is_training=False)  # 是否为训练过程,train_dataset为True,valid_dataset为Falsemodel = get_application_model(app_name=args.app_name,  # 任务名称,这里选择文本分类"clip"pretrained_model_name_or_path=get_pretrain_model_path(args.pretrained_model_name_or_path),user_defined_parameters=user_defined_parameters# user_defined_parameters:用户自定义参数,直接填入刚刚处理好的自定义参数user_defined_parameters)trainer = Trainer(model=model,train_dataset=train_dataset,user_defined_parameters=user_defined_parameters,evaluator=get_application_evaluator(app_name=args.app_name,valid_dataset=valid_dataset,user_defined_parameters=user_defined_parameters,eval_batch_size=32))trainer.train()# 模型评估model = get_application_model_for_evaluation(app_name=args.app_name,pretrained_model_name_or_path=args.checkpoint_dir,user_defined_parameters=user_defined_parameters)evaluator = get_application_evaluator(app_name=args.app_name,valid_dataset=valid_dataset,user_defined_parameters=user_defined_parameters,eval_batch_size=32)model.to(torch.cuda.current_device())evaluator.evaluate(model=model)# 模型预测if test:predictor = get_application_predictor(app_name="clip",model_dir="./outputs/clip_model/",first_sequence="text",second_sequence="image",sequence_length=32,user_defined_parameters=user_defined_parameters)predictor_manager = PredictorManager(predictor=predictor,input_file="data/vcg_furnitures_text_image/vcg_furnitures_test.tsv",input_schema="text:str:1",output_file="text_feat.tsv",output_schema="text_feat",append_cols="text",batch_size=2)predictor_manager.run()if __name__ == "__main__":initialize_easynlp()args = get_args()user_defined_parameters = parse_user_defined_parameters('pretrain_model_name_or_path=alibaba-pai/clip_chinese_roberta_base_vit_base')args.checkpoint_dir = "./outputs/clip_model/"args.pretrained_model_name_or_path = "alibaba-pai/clip_chinese_roberta_base_vit_base"# args.n_gpu = 3# args.worker_gpu = "1,2,3"args.app_name = "clip"args.tables = "data/pai/MUGE_MR_train_base64_part.tsv,data/pai/MUGE_MR_valid_base64_part.tsv"# "data/vcg_furnitures_text_image/vcg_furnitures_train.tsv," \#               "data/vcg_furnitures_text_image/vcg_furnitures_test.tsv"# "data/pai/MUGE_MR_train_base64_part.tsv,data/pai/MUGE_MR_valid_base64_part.tsv"args.input_schema = "text:str:1,image:str:1"args.first_sequence = "text"args.second_sequence = "image"args.learning_rate = 1e-4args.epoch_num = 1000args.random_seed = 42args.save_checkpoint_steps = 200args.sequence_length = 32# args.train_batch_size = 2args.micro_batch_size = 32test = Falsemain()# python -m torch.distributed.launch --nproc_per_node 4 tools/train_pai_chinese_clip.py

说一点自己的想法,在我自己工作之初,我很喜欢去拆解一些框架,例如openmm系列,但其实大部分在训练过程上都是相似的,大可不必,在改动上,也没有必要对其进行流程上的大改动,兼具百家之长,了解整体pipeline,更加专注在pipeline实现和效果导向型的结果提交更加有效。

相关文章:

[pai-diffusion]pai的easynlp的clip模型训练

EasyNLP带你玩转CLIP图文检索 - 知乎作者:熊兮、章捷、岑鸣、临在导读随着自媒体的不断发展,多种模态数据例如图像、文本、语音、视频等不断增长,创造了互联网上丰富多彩的世界。为了准确建模用户的多模态内容,跨模态检索是跨模态…...

期权如何交易?期权如何做模拟交易?

买卖期权的第一步就是要有期权账户,国内的期权品种有商品期权和ETF期权以及股指期权,每种的开户方式和要求都不同,下文为大家介绍期权如何交易?期权如何做模拟交易? 一、期权交易需要开立一个期权账户,可以…...

【新书推荐】大模型赛道如何实现华丽的弯道超车 —— 《分布式统一大数据虚拟文件系统 Alluxio原理、技术与实践》

文章目录 大模型赛道如何实现华丽的弯道超车 —— AI/ML训练赋能解决方案01 具备对海量小文件的频繁数据访问的 I/O 效率02 提高 GPU 利用率,降低成本并提高投资回报率03 支持各种存储系统的原生接口04 支持单云、混合云和多云部署01 通过数据抽象化统一数据孤岛02 …...

Calendar对象获取当前周的bug

项目场景: 双周项目管理,需要获取当前周为一年之中的第几周,原先的代码是用Calendar对象,先用setTime()把当前时间传入,再用get(3)获取一年中的第几周 问题描述 实际发…...

嵌入式环境buildroot的espeak配置与编译

1、在buildroot目录下输入make menuconfig 2、选择Target packages 3、选择Audio and video applications 4、选择espeak、选择alsa via portaudio (新版嵌入式linux一般都是用alsa音频驱动) 5、配置portaudio 选择Library 6、选择Audio/Sound 7、选择…...

物理机环境搭建-linux部署nginx

1、安装nginx部署所需依赖 yum install -y gcc-c pcre pcre-devel zlib zlib-devel openssl openssl-devel2、安装nginx包 wget http://nginx.org/download/nginx-1.8.0.tar.gz 如果没有wget可以安装一下 yum install -y wget下载完成后可以在/usr/local/下放置tar包&#xf…...

删除安装Google Chrome浏览器时捆绑安装的Google 文档、表格、幻灯片、Gmail、Google 云端硬盘、YouTube网址链接(Mac)

删除安装Google Chrome浏览器时捆绑安装的Google 文档、表格、幻灯片、Gmail、Google 云端硬盘、YouTube网址链接(Mac) Mac mini操作系统,安装完 Google Chrome 浏览器以后,单击 启动台 桌面左下角的“显示应用程序”,我们发现捆绑安装了 Goo…...

硬件故障诊断:快速定位问题

🌷🍁 博主猫头虎(🐅🐾)带您 Go to New World✨🍁 🦄 博客首页——🐅🐾猫头虎的博客🎐 🐳 《面试题大全专栏》 🦕 文章图文…...

IP代理与加速器:理解它们的区别与共同点

在网络使用过程中,我们经常会遇到需要提高访问速度或保护隐私的需求。IP代理和加速器都是常见的应对方案,但它们在工作原理和应用场景上存在一些区别。本文将为您深入探讨IP代理和加速器的异同,帮助您更好地理解它们的作用和适用情况&#xf…...

Java中List转字符串的方法

一、使用String.join方法 在Java 8之后&#xff0c;String类增加了一个静态方法join()&#xff0c;可以方便地将列表中的元素连接成字符串。 // 创建List List<String> list Arrays.asList("Google", "Baidu", "Taobao"); // 以逗号分隔…...

PyTorch实战:实现MNIST手写数字识别

前言 PyTorch可以说是三大主流框架中最适合初学者学习的了&#xff0c;相较于其他主流框架&#xff0c;PyTorch的简单易用性使其成为初学者们的首选。这样我想要强调的一点是&#xff0c;框架可以类比为编程语言&#xff0c;仅为我们实现项目效果的工具&#xff0c;也就是我们…...

【计算机网络】深入理解TCP协议二(连接管理机制、WAIT_TIME、滑动窗口、流量控制、拥塞控制)

TCP协议 1.连接管理机制2.再谈WAIT_TIME状态2.1理解WAIT_TIME状态2.2解决TIME_WAIT状态引起的bind失败的方法2.3监听套接字listen第二个参数介绍 3.滑动窗口3.1介绍3.2丢包情况分析 4.流量控制5.拥塞控制5.1介绍5.2慢启动 6.捎带应答、延时应答 1.连接管理机制 正常情况下&…...

springboot整合sentinel完成限流

1、直入正题&#xff0c;下载sentinel的jar包 1.1 直接到Sentinel官网里的releases下即可下载最新版本&#xff0c;Sentinel官方下载地址&#xff0c;直接下载jar包即可。不过慢&#xff0c;可能下载不下来 1.2 可以去gitee去下载jar包 1.3 下载完成后&#xff0c;进行打包…...

signal(SIGPIPE, SIG_IGN)

linux查看signal常见信号。 [rootplatform:]# kill -l1) HUP2) INT3) QUIT4) ILL5) TRAP6) ABRT7) BUS8) FPE9) KILL 10) USR1 11) SEGV 12) USR2 13) PIPE 14) ALRM 15) TERM 16) STKFLT 17) CHLD 18) CONT 19) STOP 20) TSTP 21) TTIN 22) TTOU 23) URG 24) XCPU 25) XFSZ 2…...

GAN学习笔记

1.原始的GAN 1.1原始的损失函数 1.1.1写法1参考1&#xff0c;参考2 1.1.2 写法2 where, G Generator D Discriminator Pdata(x) distribution of real data P(z) distribution of generator x sample from Pdata(x) z sample from P(z) D(x) Discriminator network G…...

layui框架学习(45: 工具集模块)

layui的工具集模块util支持固定条、倒计时等组件&#xff0c;同时提供辅助函数处理时间数据、字符转义、批量事件处理等操作。   util模块中的fixbar函数支持设置固定条&#xff08;2.7版本的帮助文档中叫固定块&#xff09;&#xff0c;是指固定在页面一侧的工具条元素&…...

车道检测:Decoupling the Curve Modeling and Pavement Regression for Lane Detection

论文作者&#xff1a;Wencheng Han,Jianbing Shen 作者单位&#xff1a;University of Macau 论文链接&#xff1a;http://arxiv.org/abs/2309.10533v1 内容简介&#xff1a; 1&#xff09;方向&#xff1a;车道检测 2&#xff09;应用&#xff1a;车道检测 3&#xff09…...

【扩散生成模型】Diffusion Generative Models

提出扩散模型思想的论文&#xff1a; 《Deep Unsupervised Learning using Nonequilibrium Thermodynamics》理解 扩散模型综述&#xff1a; “扩散模型”首篇综述论文分类汇总&#xff0c;谷歌&北大最新研究 理论推导、代码实现&#xff1a; What are Diffusion Models?…...

美联储加息步伐“暂停”!BTC凌晨力守27000美元!

美东时间9月20日下午&#xff0c;美联储宣布放缓加息步伐&#xff0c;将联邦基金利率目标维持在5.25%至5.50%的区间不变&#xff0c;保持在22年来的最高点&#xff0c;符合市场预期。 在最新的FOMC声明中&#xff0c;美联储表示最近的指标表明&#xff0c;经济活动一直在稳步扩…...

微信小程序与idea后端如何进行数据交互

交互使用的其实就是调用的req.get(url)方法 进行路径访问&#xff0c;你要先保证自己的springboot项目已经成功运行了&#xff1a; 如下&#xff1a; 如何交互的&#xff1f; 微信小程序&#xff1a;如下为index.js页面 在onLoad()事件中调用方法Project.findAllCities() 要…...

网络编程(Modbus进阶)

思维导图 Modbus RTU&#xff08;先学一点理论&#xff09; 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议&#xff0c;由 Modicon 公司&#xff08;现施耐德电气&#xff09;于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...

Python爬虫实战:研究MechanicalSoup库相关技术

一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...

[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?

&#x1f9e0; 智能合约中的数据是如何在区块链中保持一致的&#xff1f; 为什么所有区块链节点都能得出相同结果&#xff1f;合约调用这么复杂&#xff0c;状态真能保持一致吗&#xff1f;本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里&#xf…...

Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动

一、前言说明 在2011版本的gb28181协议中&#xff0c;拉取视频流只要求udp方式&#xff0c;从2016开始要求新增支持tcp被动和tcp主动两种方式&#xff0c;udp理论上会丢包的&#xff0c;所以实际使用过程可能会出现画面花屏的情况&#xff0c;而tcp肯定不丢包&#xff0c;起码…...

逻辑回归:给不确定性划界的分类大师

想象你是一名医生。面对患者的检查报告&#xff08;肿瘤大小、血液指标&#xff09;&#xff0c;你需要做出一个**决定性判断**&#xff1a;恶性还是良性&#xff1f;这种“非黑即白”的抉择&#xff0c;正是**逻辑回归&#xff08;Logistic Regression&#xff09;** 的战场&a…...

2025年能源电力系统与流体力学国际会议 (EPSFD 2025)

2025年能源电力系统与流体力学国际会议&#xff08;EPSFD 2025&#xff09;将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会&#xff0c;EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...

Day131 | 灵神 | 回溯算法 | 子集型 子集

Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣&#xff08;LeetCode&#xff09; 思路&#xff1a; 笔者写过很多次这道题了&#xff0c;不想写题解了&#xff0c;大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...

iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版​分享

平时用 iPhone 的时候&#xff0c;难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵&#xff0c;或者买了二手 iPhone 却被原来的 iCloud 账号锁住&#xff0c;这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...

聊聊 Pulsar:Producer 源码解析

一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台&#xff0c;以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中&#xff0c;Producer&#xff08;生产者&#xff09; 是连接客户端应用与消息队列的第一步。生产者…...

微信小程序 - 手机震动

一、界面 <button type"primary" bindtap"shortVibrate">短震动</button> <button type"primary" bindtap"longVibrate">长震动</button> 二、js逻辑代码 注&#xff1a;文档 https://developers.weixin.qq…...