pytorch冻结参数训练的坑
由于项目需要训练一个主干网络接多个分支的模型,所以先训练一个主干网络加第一个分支,再用另外的数据训练第二个分支,训练的过程中需要冻结主干网络部分,后面的分支训练过程也一样需要冻结主干网络部分。
冻结模型的方式
for name, para in model.named_parameters():# 冻结backbone的权重if name.split(".")[0] == "backbone":para.requires_grad = False # 或者用para.requires_grad_(False),一个是通过属性直接赋值,一个是通过函数赋值else:para.requires_grad = True
# 可以打印需要更新梯度的参数
for name, value in model.named_parameters():print(name, "\t更新梯度:",value.requires_grad)
坑1:这样做并不能冻结batchnorm层的参数,所以需要在训练中手动冻结。如:
def fix_bn(m):classname = m.__class__.__name__if classname.find('SyncBatchNorm') != -1 or classname.find('InstanceNorm2d') != -1 or classname.find('BatchNorm2d') != -1: #SyncBatchNorm, InstanceNorm2dif m.num_features in [32, 64, 96, 128, 256, 384, 768, 192, 1152, 224]: # 需要冻结的BN层的通道数m.eval()def train():for epoch in range(max_epoch):model.train()if args.freeze:model.apply(fix_bn)model.backbone[5][0].block[0][1].eval() # 假如需要冻结的BN层通道数和不需要冻结的BN层通道数一样,则需要单独写for batch_idx, (data, target) in enumerate(train_loader):...
坑2:用了冻结训练(freeze)就不要用EMA方式更新模型了,不然收敛缓慢不说,还会造成前面冻结的参数产生变化,可以从EMA的代码看出端倪:
class EMA:def __init__(self, model, decay=0.9999):super().__init__()import copyself.decay = decayself.model = copy.deepcopy(model)self.model.eval()def update_fn(self, model, fn):with torch.no_grad():e_std = self.model.state_dict().values()#m_std = model.module.state_dict().values() # multi-gpum_std = model.state_dict().values() # single-gpufor e, m in zip(e_std, m_std):e.copy_(fn(e, m))def update(self, model):self.update_fn(model, fn=lambda e, m: self.decay * e + (1. - self.decay) * m)
可以看出EMA的方式更新模型方式,大部分是结合上一个模型的参数的,即:
model_update = decay*model(t-1) + (1-decay)*model(t) # model(t-1) 代表上一次迭代模型的参数,model(t)代表当前迭代得到的模型参数
虽然冻结了backbone的参数,阻止了梯度在backbone中反向传播,但参数由于经过如上乘法及加法运算,由于精度原因,还是会发生微小变化,虽然训练次数增加,这个变化会扩大,从而达不到冻结训练的效果。而且从计算公式可以看出来,采用EMA的方式更新模型参数,参数会更新得很慢,会造成网络难以学习的“错觉”。我在这里困住了3天,有怀疑过是否是网络设计问题,是否是多GPU同步的问题,是否是参数设置,如学习率过小,权重衰减过大,或者dropout设置过大等等,最终一步一步排除定位到EMA的问题。
以这次的经验来看,EMA只适合在上一次训练得到模型的基础上,这一次加了额外的数据,需要在上一次的基础上做微调的情况。
相关文章:
pytorch冻结参数训练的坑
由于项目需要训练一个主干网络接多个分支的模型,所以先训练一个主干网络加第一个分支,再用另外的数据训练第二个分支,训练的过程中需要冻结主干网络部分,后面的分支训练过程也一样需要冻结主干网络部分。 冻结模型的方式 for nam…...
P1827 [USACO3.4] 美国血统 American Heritage(前序 + 中序 生成后序)
P1827 [USACO3.4] 美国血统 American Heritage(前序 中序 生成后序) 一、前言 二叉树入门题。涉及到树的基本知识、树的结构、树的生成。 本文从会从结构,到完成到,优化。 二、基础知识 Ⅰ、二叉树的遍历 前序遍历ÿ…...
【四、centOS安装docker】
安装docker sudo yum install -y yum-utils device-mapper-persistent-data lvm2 如果以上报错 备份系统自带yum源配置文件 mv /etc/yum.repos.d/CentOS-Base.repo /etc/yum.repos.d/CentOS-Base.repo.backup进入 /etc/yum.repos.d cd /etc/yum.repos.d删除文件 rm -f *.r…...
想学嵌入式开发,薪资怎么样?
想学嵌入式开发,薪资怎么样? 对于嵌入式工程师来说呢,它重点学习内容就是首先一定要打好基础,如果从编程语言角度来讲,那么可以在语言上选C或者C,你可以选择其中任何一门语言作为你的入门。 最近很多小伙伴…...
SQL死锁进程内容查询语句
1.方式1 SELECT object_name(A.resource_associated_entity_id) as TABLENAME, A.request_session_id AS SPID,DB_NAME(B.dbid) AS DBName,B.blocked,B.dbid,B.program_name,B.waitresource,B.lastwaittype,B.loginame,B.hostname,B.login_time,B.last_batch--,B.* FROM sy…...
Ubuntu 20.04中Nightingale二进制部署
参考博客《【夜莺监控】初识夜莺,强!》 lsb_release -r可以看到操作系统版本是20.04,uname -r可以看到内核版本是5.5.19。 sudo apt-get update进行更新镜像源。 完成之后,如下图: sudo apt-get upgrade更新软件…...
深入探讨Java面试中内存泄漏:如何识别、预防和解决
引言 在编写和维护Java应用程序时,内存泄漏是一个重要的问题,可能导致性能下降和不稳定性。本文将介绍内存泄漏的概念,为什么它在Java应用程序中如此重要,并明确本文的目标,即识别、预防和解决内存泄漏问题。 内存泄…...
win10 安装.net framework 3.5,错误代码0x8024401C
win10 安装.net framework 3.5,错误代码0x8024401C 参考链接:https://www.gxlsystem.com/diannaowenti-386775.html 解决方法如下,cmd中执行: net stop wuauserv reg delete HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Microsoft\W…...
杂记 | Langchain中few-shot提示词模板的使用(给提示词添加示例)
文章目录 01 普通的提示词模板02 few-shot提示词模板 Langchain是一个集成多个大语言模型的开源框架,可以使用它来快速开发大语言模型应用。 本文的代码使用到的模块: from typing import List, Dict from langchain import PromptTemplate, FewShotPr…...
SVN -基础
SVN - 基础 概念操作步骤开发实际经验 概念 带SVN路径 有隐藏文件,记录repo的一些信息,与repo进行关联,可以与repo进行同步 不带SVN路径 只是单纯的文件,与repo独立 操作步骤 checkout 具有路径 URLcheckout dir 输出目标文件夹…...
MySQL基础终端命令与Python简单操作MySQL
文章目录 MySQL终端命令1. 进入mysql2. 创建数据库3. 选择数据库4. 创建数据表1. 主键约束2. 外键约束3. 非空约束4. 唯一约束5. 使用默认约束6. 设置id为自增列 5. 查看数据表6. 修改数据表1. 修改表名2. 修改表的字段类型3. 修改表的字段名4. 为表添加字段5. 删除字段6. 调整…...
编译原理.龙书学习1
第一章: 编译器:将程序翻译成一种能够被计算机执行的形式 解释器:解释器直接利用用户提供的输入执行源程序中指定的操作 一个编译器的结构 编译器将源程序映射为语义上等价的目标程序,这个映射过程由两部分组成:分析…...
anaconda安装完成之后输入conda -V没有反应
anaconda安装完成后,conda没有反应 vim ~/.bashrc后面添加内容 # added by Anaconda3 5.3.0 installer # >>> conda init >>> # !! Contents within this block are managed by conda init !! __conda_setup"$(CONDA_REPORT_ERRORSfalse /u…...
netty报文解析之粘包半包问题
粘包问题 Netty 的粘包问题是指在网络传输过程中,由于 TCP 协议本身的特点,导致发送方发送的若干个小数据包被接收方合并成了一个大数据包。这种情况称为粘包。 TCP 协议是面向流的协议,没有数据边界,发送方发送的数据可能会被分…...
EasyCode整合mybatis-plus的配置
文章目录 entitymapper.javamapper.xmlserviceserviceImplcontroller 这篇文章不教你如何安装和使用EasyCode,只是贴出可以使用的配置。 具体EasyCode的使用可以查看其它的文章。 entity ##导入宏定义 $!{define.vm}##保存文件(宏定义) #sa…...
实施预测性维护解决方案的挑战及PreMaint的应对方法
前面我们介绍了企业选择预测性维护解决方案的常见问题和PreMaint的策略,本期我们将带来实施过程中可能会遇到的挑战,以及如何通过PreMaint来应对这些挑战,以实现可靠的预测性维护。 随着工业技术的不断进步,预测性维护作为一种先进…...
1. js中let、var、const定义变量区别与方式
1 声明语法 var upperA A; let upperB B; const upperC C; 只声明不初始化的结果,【 const定义的常量不可以修改,而且必须初始化】 // var 声明变量 var upperA; console.log(打印大写的A:%s, upperA); // 结果:打印大写的A&am…...
【STM32学习】I2C通信协议 | OLED屏
🐱作者:一只大喵咪1201 🐱专栏:《STM32学习》 🔥格言:你只管努力,剩下的交给时间! 今天需要将代码烧录到开发板中,本喵默认大家都会创建工程,以及进行基本的…...
Nvme Spec 第一章节学习
Nvme Express Base Specification 第一章 简介 1.1概述 NVM ExpressTM(NVMeTM)接口允许主机软件与非易失性存储器子系统通信。 此接口针对企业和客户端固态驱动器进行了优化,通常作为寄存器级接口连接到PCI Express接口。 注:在…...
第一章:最新版零基础学习 PYTHON 教程(第九节 - Python 语句中的 – 多行语句)
Python 中的语句: 在Python中,语句是Python解释器可以读取和执行的逻辑命令。它可能是Python 中的赋值语句或表达式。 Python 中的多行语句: 在Python中,语句通常写成一行,每行的最后一个字符是换行符。要将语句扩展到一行或多行,我们可以使用大括号 {}、圆括号 ()、方…...
测试微信模版消息推送
进入“开发接口管理”--“公众平台测试账号”,无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息: 关注测试号:扫二维码关注测试号。 发送模版消息: import requests da…...
Docker 离线安装指南
参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性,不同版本的Docker对内核版本有不同要求。例如,Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本,Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...
7.4.分块查找
一.分块查找的算法思想: 1.实例: 以上述图片的顺序表为例, 该顺序表的数据元素从整体来看是乱序的,但如果把这些数据元素分成一块一块的小区间, 第一个区间[0,1]索引上的数据元素都是小于等于10的, 第二…...
java_网络服务相关_gateway_nacos_feign区别联系
1. spring-cloud-starter-gateway 作用:作为微服务架构的网关,统一入口,处理所有外部请求。 核心能力: 路由转发(基于路径、服务名等)过滤器(鉴权、限流、日志、Header 处理)支持负…...
盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来
一、破局:PCB行业的时代之问 在数字经济蓬勃发展的浪潮中,PCB(印制电路板)作为 “电子产品之母”,其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透,PCB行业面临着前所未有的挑战与机遇。产品迭代…...
从WWDC看苹果产品发展的规律
WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...
DockerHub与私有镜像仓库在容器化中的应用与管理
哈喽,大家好,我是左手python! Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库,用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...
理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...
Mac软件卸载指南,简单易懂!
刚和Adobe分手,它却总在Library里给你写"回忆录"?卸载的Final Cut Pro像电子幽灵般阴魂不散?总是会有残留文件,别慌!这份Mac软件卸载指南,将用最硬核的方式教你"数字分手术"࿰…...
【git】把本地更改提交远程新分支feature_g
创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...
