当前位置: 首页 > news >正文

数据结构_复杂度讲解(附带例题详解)

文章目录

  • 前言
  • 什么是数据结构?
  • 什么是算法?
  • 一. 算法的时间复杂度和空间复杂度
    • 1.1 算法效率
    • 1.2 如何衡量一个算法好坏
  • 二. 时间复杂度
    • 2.1 时间复杂度概念
      • 例题一
        • 例题一分析
      • 实例一
        • 实例一分析
  • 三. 空间复杂度
      • 实例
        • 实例问题解析
  • 四. 常见复杂度对比
  • 五. 常见时间复杂度以及复杂度oj练习


前言

什么是数据结构?

数据结构是计算机科学中研究数据组织、存储、管理和操作的方法和原则。它涉及到各种不同的数据类型和数据组织方式,包括数组、链表、树、图等。数据结构的设计和实现可以影响到程序的效率和可靠性,因此是计算机科学中非常重要的一个领域。
  • (数据结构是计算机存储、组织数据的方式,指相互之间在一种或多种特定关系的数据元素的集合)
  • (数据结构就是在内存当中管理数据(管理的核心就是增、删、查、改),在内存中管理数据有很多种方式,比如说链型结构…不同结构有他们各式各样的优越势)

什么是算法?

  • 算法就是定义良好的计算过程,他取一个或一组的值为输入,并产生出一个或一组值作为输出。简单来说算法就是一系列的计算步骤,用来将输入数据转化成输出结果
  • (算法是对这些数据进行一些处理,就是排序、查找、这些。然后达到我们想要的目的)

一. 算法的时间复杂度和空间复杂度

写完一个算法后呢,要评估一下,这个算法效率上跑的怎么样,一个算法衡量它最重要的标准就是它的性能如何,所以数据结构里面给出了评估它一个性能的标准,叫做: 复杂度的计算。 分下来叫:时间复杂度 和 空间复杂度。

1.1 算法效率

算法效率是衡量算法运行时间和所需资源的指标。它可以用时间复杂度和空间复杂度来表示。算法效率越高,运行速度越快,所需资源越少。

1.2 如何衡量一个算法好坏

算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。 因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的 即时间复杂度和空间复杂度。

二. 时间复杂度

2.1 时间复杂度概念

在计算机科学中,算法的时间复杂度是一个函数 ,它定量描述了该算法的运行时间。时间复杂度是衡量算法时间效率的指标。它表示算法运行时间与输入规模的增长关系。常见的时间复杂度有 O(1)、O(log n)、O(n)、O(n log n)、O(n²) 等。时间复杂度越低,算法效率越高。

即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。

例题一

例题一分析

第一个for循环里嵌套了一个for循环,总的循环会执行NN次;
第二个for循环会执行2
N次;
while循环固定 – 10 次 ;

所以Func1 执行的基本操作次数是:N^2+2*N+10

但是,我们需要注意的是,实际我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而是只需要大概执行次数,抓大头,那么这里我们使用大O的渐进表示法。

例如:N^2+2*N+10
当 N = 10 F(N) = 130 ;
N = 100F(N) = 10210 ;
N = 1000F(N) = 1002010 ;


随着N越来越大,2N+10的值与N^2的值相比 2N+10的值太小,可以忽略,那么这里用大O渐进表示法 时间复杂度记为 O(N^2)。

实例一

实例一分析

Func2准确的时间复杂度是: 2N+10:这个 +10 对结果影响不大,可以忽略,省略掉。
那最后是
O (2N)
还是O (N) 呢。
为什么最后取得是O (N)。

  1. 在这个表达式里面一般会去阶数最高的一个项,因为这个项是对表达式影响最大的。
  2. 其次还会忽略掉它的系数

三. 空间复杂度

是对一个算法在运行过程中额外临时占用存储空间大小的量度。
空间复杂度不是程序占用了多少 bytes 的空间,所以空间复杂度算的是变量的个数
空间复杂度计算规则基本跟时间复杂度类似,也使用大O渐进表示法

注意:
函数运行时所需要的栈空间(存储函数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显示申请的额外空间来确定。

实例

实例问题解析
  1. 问题一:不算,因为它不是为了解决这个排序额外开的空间,因为这个数组存的是本来提供的数据样本。
  2. 问题二:是为了解觉这个排序,额外开的空间。
  3. 问题三:这三个变量是因为我们在排序的过程中我们要进行 循环、迭代 … 定义的变量。三个 — 常数个 — 空间复杂度 – O(1) --不是一个,是常数个。

四. 常见复杂度对比

五. 常见时间复杂度以及复杂度oj练习

相关文章:

数据结构_复杂度讲解(附带例题详解)

文章目录 前言什么是数据结构?什么是算法?一. 算法的时间复杂度和空间复杂度1.1 算法效率1.2 如何衡量一个算法好坏 二. 时间复杂度2.1 时间复杂度概念例题一例题一分析 实例一实例一分析 三. 空间复杂度实例实例问题解析 四. 常见复杂度对比五. 常见时间…...

学习MLPERF

测试基准与标准 | BenchCouncil 其中涉及AI的有如下: AI (1) AIBench Training AIBench 培训采用平衡的 AI 基准测试方法,考虑全面性、代表性、可负担性和可移植性。该方法广泛调查人工智能任务和模型,并在最大程度上涵盖了算法级、系统级…...

openEuler-20.03 LTS管理用户和用户组

openEuler-20.03 LTS 管理用户和用户组的官方文档,在这里。补充一下关于如何在 openeuler 上创建启用 sudo 新用户(无需修改服务器 /etc/sudoers 文件)的一个小知识点。 创建启用 sudo 新用户 该 sudo 命令提供了一种向普通用户授予管理员特权…...

什么是读写锁

读写锁 读写锁有3 种状态:读模式下的加锁状态、写模式下的加锁状态和不加锁状态,一次只有一个线程可以占有写模式的读写锁,但是可以有多个线程同时占有读模式的读写锁。因此可知,读写锁比互斥锁具有更高的并行性! 读…...

低代码助力企业数字化转型

在当今这个数字化快速发展的时代,企业面临的竞争越来越激烈,数字化转型已成为企业发展的必经之路。低代码平台作为一种新型的开发工具,正在逐渐成为企业数字化转型的重要助力。本文将从数字化转型背景、低代码平台介绍、低代码平台的应用、低…...

Linux 作业

一. 题目 二.作业内容 第一题: 因老师要求上传安装后远程连接XShell截图,如下: 制作yum缓存:[rootRHEL8 ~]# yum makecache 安装gcc:[rootRHEL8 ~]# yum install gcc -y 制作快照:快照,初始 s…...

【数据分享】2005-2022年全国民航机场客货吞吐量和起降架次数据

机场是一个城市对外联系的重要渠道,机场的旅客吞吐量和货物吞吐量是体现一个城市对外联系程度的重要指标。 本次我们给大家分享的是2005-2022年我国民航机场的旅客吞吐量、货邮吞吐量、起降架次数据。数据格式为Excel和Shp两种格式。数据坐标为WGS1984。原始数据来…...

清华博士面试的准备(已通过)

内修(30%) 不管如何 任何人都不能影响你的心态。因为冷静、理性,才能处理好95%以上的问题。剩下的5%我可以不拥有。不能既要、又要、还要。尊重客观规律。放下我执。 价值导向、解决问题为导向。 允许一切事情的发生,是我们最大的…...

requests爬虫详解

Requests 安装 pip install requests 示例 from fake_useragent import UserAgent import requestsdef cra1_1(): url http://xx/front/website/findAllTypes headers {User-Agent: UserAgent().chrome} resp requests.get(url, headersheaders) result resp.json()i…...

oracle的正则表达式(regular expression)

当前,正则表达式已经在很多软件中得到广泛的应用,包括Linux, Unix,HP等操作系统,PHP,C#,Java等开发环境,ORACLE则在10G中推出了自己的正则表达式。 Oracle 10g正则表达式提高了SQL灵活性&#…...

sh脚本 单独可以执行,放到crontab中不执行(定时清空redis)

1.原因: 执行环境的不同 2.解决办法: 添加环境变量 PATH/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin:/usr/local/sbin:~/bin export PATH 3. 完整示例: #!/bin/shPATH/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin:/usr/local/sbin:…...

mysql 半同步复制模式使用详解

目录 一、前言 二、mysql主从架构简介 2.1 mysql主从复制架构概述 2.2 为什么使用主从架构 2.2.1 提高数据可用性 2.2.2 提高数据可靠性 2.2.3 提升数据读写性能 2.3 主从架构原理 2.4 主从架构扩展 2.4.1 双机热备(AB复制) 2.4.2 级联复制 2…...

以太坊代币标准ERC20、ERC721

两个概念 ERC(Ethereum Request for Comment) 以太坊意见征集稿EIP(Ethereum Improvement Proposals)以太坊改进提案 ERC和EIP用于使得以太坊更加完善;在ERC中提出了很多标准,用的最多的标准就是它的Token标准; 有哪些标准详细见https://eips.ethereum…...

编写基于冒泡排序算法的qsort函数

目录 1.简单认识冒泡排序 2.进入正文分析如何实现函数 3.1比较两个相邻元素的大小 3.2比较两个相邻元素大小后要换函数 4.my_qsort函数: 5.总结: 1.简单认识冒泡排序 冒泡排序的步骤如下: 比较相邻的两个元素,如果第一个元素比…...

有什么推荐使用的企业上网行为管理软件?

在当今信息化社会,企业的上网行为管理越来越重要。企业上网行为软件是一种能够监控和管理企业员工上网行为的工具,它可以帮助企业更好地管理网络资源,提高工作效率,保护企业信息安全,并符合相关的法律法规。本文将深入…...

机器学习第五课--广告点击率预测项目以及特征选择的介绍

这个项目的主要的目的是通过给定的广告信息和用户信息来预测一个广告被点击与否。 如果广告有很大概率被点击就展示广告,如果概率低,就不展示。 因为如果广告没有被点击,对双方(广告主、平台)来讲都没有好处。所以预测…...

细说tcpdump的妙用

原文地址:EMC中文支持论坛https://community.emc.com/go/chinese 介绍 tcpdump命令最初设计用于观察TCP/IP性能问题,它是一个用于截取网络分组,并输出分组内容的工具。tcpdump可以将网络中传送的数据包的报文头完全截获下来提供分析,它支持针…...

【深度学习实验】前馈神经网络(七):批量加载数据(直接加载数据→定义类封装数据)

目录 一、实验介绍 二、实验环境 1. 配置虚拟环境 2. 库版本介绍 三、实验内容 0. 导入必要的工具包 1. 直接加载鸢尾花数据集 a. 加载数据集 b. 数据归一化 c. 洗牌操作 d. 打印数据 2. 定义类封装数据 a. __init__(构造函数:用于初始化数据集对象) b.…...

气体放电模拟装置中1Pa~101kPa范围内的真空度控制技术

摘要:针对微间隙气体放电特性分析中需要对不同真空压力进行精密控制的要求,本文提出了相应的解决方案。解决方案采用了双路调节技术,由真空计、电控针阀和真空压力控制器组成进气和排气控制回路,可实现真空度1Pa~101kPa全量程范围…...

华为OD机试 - 构成正方形的数量 - 数据结构map(Java 2023 B卷 100分)

目录 专栏导读一、题目描述二、输入描述三、输出描述四、Java算法源码五、效果展示1、输入2、输出3、说明 华为OD机试 2023B卷题库疯狂收录中,刷题点这里 专栏导读 本专栏收录于《华为OD机试(JAVA)真题(A卷B卷)》。 …...

接口测试中缓存处理策略

在接口测试中,缓存处理策略是一个关键环节,直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性,避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明: 一、缓存处理的核…...

Qt Widget类解析与代码注释

#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码,写上注释 当然可以!这段代码是 Qt …...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

Reasoning over Uncertain Text by Generative Large Language Models

https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...

【生成模型】视频生成论文调研

工作清单 上游应用方向:控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...

在QWebEngineView上实现鼠标、触摸等事件捕获的解决方案

这个问题我看其他博主也写了,要么要会员、要么写的乱七八糟。这里我整理一下,把问题说清楚并且给出代码,拿去用就行,照着葫芦画瓢。 问题 在继承QWebEngineView后,重写mousePressEvent或event函数无法捕获鼠标按下事…...

LOOI机器人的技术实现解析:从手势识别到边缘检测

LOOI机器人作为一款创新的AI硬件产品,通过将智能手机转变为具有情感交互能力的桌面机器人,展示了前沿AI技术与传统硬件设计的完美结合。作为AI与玩具领域的专家,我将全面解析LOOI的技术实现架构,特别是其手势识别、物体识别和环境…...

人工智能 - 在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型

在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型。这些平台各有侧重,适用场景差异显著。下面我将从核心功能定位、典型应用场景、真实体验痛点、选型决策关键点进行拆解,并提供具体场景下的推荐方案。 一、核心功能定位速览 平台核心定位技术栈亮…...

Pydantic + Function Calling的结合

1、Pydantic Pydantic 是一个 Python 库,用于数据验证和设置管理,通过 Python 类型注解强制执行数据类型。它广泛用于 API 开发(如 FastAPI)、配置管理和数据解析,核心功能包括: 数据验证:通过…...

云安全与网络安全:核心区别与协同作用解析

在数字化转型的浪潮中,云安全与网络安全作为信息安全的两大支柱,常被混淆但本质不同。本文将从概念、责任分工、技术手段、威胁类型等维度深入解析两者的差异,并探讨它们的协同作用。 一、核心区别 定义与范围 网络安全:聚焦于保…...