【深度学习实验】前馈神经网络(三):自定义多层感知机(激活函数logistic、线性层算Linear)
目录
一、实验介绍
二、实验环境
1. 配置虚拟环境
2. 库版本介绍
三、实验内容
0. 导入必要的工具包
1. 构建数据集
2. 激活函数logistic
3. 线性层算子 Linear
4. 两层的前馈神经网络MLP
5. 模型训练
一、实验介绍
- 本实验实现了一个简单的两层前馈神经网络
- 激活函数logistic
- 线性层算子Linear
二、实验环境
本系列实验使用了PyTorch深度学习框架,相关操作如下:
1. 配置虚拟环境
conda create -n DL python=3.7
conda activate DL
pip install torch==1.8.1+cu102 torchvision==0.9.1+cu102 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
conda install matplotlib
conda install scikit-learn
2. 库版本介绍
软件包 | 本实验版本 | 目前最新版 |
matplotlib | 3.5.3 | 3.8.0 |
numpy | 1.21.6 | 1.26.0 |
python | 3.7.16 | |
scikit-learn | 0.22.1 | 1.3.0 |
torch | 1.8.1+cu102 | 2.0.1 |
torchaudio | 0.8.1 | 2.0.2 |
torchvision | 0.9.1+cu102 | 0.15.2 |
三、实验内容
ChatGPT:
前馈神经网络(Feedforward Neural Network)是一种常见的人工神经网络模型,也被称为多层感知器(Multilayer Perceptron,MLP)。它是一种基于前向传播的模型,主要用于解决分类和回归问题。
前馈神经网络由多个层组成,包括输入层、隐藏层和输出层。它的名称"前馈"源于信号在网络中只能向前流动,即从输入层经过隐藏层最终到达输出层,没有反馈连接。
以下是前馈神经网络的一般工作原理:
输入层:接收原始数据或特征向量作为网络的输入,每个输入被表示为网络的一个神经元。每个神经元将输入加权并通过激活函数进行转换,产生一个输出信号。
隐藏层:前馈神经网络可以包含一个或多个隐藏层,每个隐藏层由多个神经元组成。隐藏层的神经元接收来自上一层的输入,并将加权和经过激活函数转换后的信号传递给下一层。
输出层:最后一个隐藏层的输出被传递到输出层,输出层通常由一个或多个神经元组成。输出层的神经元根据要解决的问题类型(分类或回归)使用适当的激活函数(如Sigmoid、Softmax等)将最终结果输出。
前向传播:信号从输入层通过隐藏层传递到输出层的过程称为前向传播。在前向传播过程中,每个神经元将前一层的输出乘以相应的权重,并将结果传递给下一层。这样的计算通过网络中的每一层逐层进行,直到产生最终的输出。
损失函数和训练:前馈神经网络的训练过程通常涉及定义一个损失函数,用于衡量模型预测输出与真实标签之间的差异。常见的损失函数包括均方误差(Mean Squared Error)和交叉熵(Cross-Entropy)。通过使用反向传播算法(Backpropagation)和优化算法(如梯度下降),网络根据损失函数的梯度进行参数调整,以最小化损失函数的值。
前馈神经网络的优点包括能够处理复杂的非线性关系,适用于各种问题类型,并且能够通过训练来自动学习特征表示。然而,它也存在一些挑战,如容易过拟合、对大规模数据和高维数据的处理较困难等。为了应对这些挑战,一些改进的网络结构和训练技术被提出,如卷积神经网络(Convolutional Neural Networks)和循环神经网络(Recurrent Neural Networks)等。
本系列为实验内容,对理论知识不进行详细阐释
(咳咳,其实是没时间整理,待有缘之时,回来填坑)
0. 导入必要的工具包
import torch
from torch import nn
1. 构建数据集
input = torch.ones((1, 10))
创建了一个输入张量`input`,大小为(1, 10)。
2. 激活函数logistic
def logistic(z):return 1.0 / (1.0 + torch.exp(-z))
logistic函数的特点是将输入值映射到一个介于0和1之间的输出值,可以看作是一种概率估计。当输入值趋近于正无穷大时,输出值趋近于1;当输入值趋近于负无穷大时,输出值趋近于0。因此,logistic函数常用于二分类问题,将输出值解释为概率值,可以用于预测样本属于某一类的概率。在神经网络中,logistic函数的引入可以引入非线性特性,使得网络能够学习更加复杂的模式和表示。
3. 线性层算子 Linear
class Linear(nn.Module):def __init__(self, input_size, output_size):super(Linear, self).__init__()self.params = {}self.params['W'] = nn.Parameter(torch.randn(input_size, output_size, requires_grad=True))self.params['b'] = nn.Parameter(torch.randn(1, output_size, requires_grad=True))self.grads = {}self.inputs = Nonedef forward(self, inputs):self.inputs = inputsoutputs = torch.matmul(inputs, self.params['W']) + self.params['b']return outputs
Linear
类是一个自定义的线性层,继承自nn.Module
,- 它具有两个参数:
input_size
和output_size
,分别表示输入和输出的大小。
- 它具有两个参数:
- 在初始化时,创建了两个参数:
W
和b
,分别代表权重和偏置,都是可训练的张量,并通过nn.Parameter
进行封装。params
和grads
是字典类型的属性,用于存储参数和梯度;inputs
是一个临时变量,用于存储输入。
forward
方法实现了前向传播的逻辑,利用输入和参数计算输出。
4. 两层的前馈神经网络MLP
class MLP(nn.Module):def __init__(self, input_size, hidden_size, output_size):super(MLP, self).__init__()self.fc1 = Linear(input_size, hidden_size)self.fc2 = Linear(hidden_size, output_size)def forward(self, x):z1 = self.fc1(x)a1 = logistic(z1)z2 = self.fc2(a1)a2 = logistic(z2)return a2
- 初始化时创建了两个线性层
Linear
对象:fc1
和fc2
forward
方法实现了整个神经网络的前向传播过程:- 输入
x
首先经过第一层线性层fc1
, - 然后通过
logistic
函数进行激活, - 再经过第二层线性层
fc2
, - 最后再经过一次
logistic
函数激活, - 并返回最终的输出。
- 输入
5. 模型训练
input_size, hidden_size, output_size = 10, 5, 2
net = MLP(input_size, hidden_size, output_size)
output = net(input)
print(output)
- 定义了三个变量
input_size
、hidden_size
和output_size
,分别表示输入大小、隐藏层大小和输出大小。 - 创建了一个
MLP
对象net
,并将输入input
传入模型进行前向计算,得到输出output
。最后将输出打印出来。
6. 代码整合
# 导入必要的工具包
import torch
from torch import nn# 线性层算子,请一定注意继承自 nn. Module, 这会帮你解决许多细节上的问题
class Linear(nn.Module):def __init__(self, input_size, output_size):super(Linear, self).__init__()self.params = {}self.params['W'] = nn.Parameter(torch.randn(input_size, output_size, requires_grad=True))self.params['b'] = nn.Parameter(torch.randn(1, output_size, requires_grad=True))self.grads = {}self.inputs = Nonedef forward(self, inputs):self.inputs = inputsoutputs = torch.matmul(inputs, self.params['W']) + self.params['b']return outputs# 实现一个两层的前馈神经网络
class MLP(nn.Module):def __init__(self, input_size, hidden_size, output_size):super(MLP, self).__init__()self.fc1 = Linear(input_size, hidden_size)self.fc2 = Linear(hidden_size, output_size)def forward(self, x):z1 = self.fc1(x)a1 = logistic(z1)z2 = self.fc2(a1)a2 = logistic(z2)return a2# Logistic 函数
def logistic(z):return 1.0 / (1.0 + torch.exp(-z))input = torch.ones((1, 10))
input_size, hidden_size, output_size = 10, 5, 2
net = MLP(input_size, hidden_size, output_size)
output = net(input)
print(output)
相关文章:
![](https://img-blog.csdnimg.cn/c2cd8f4ddaf1407ea417102ab043992a.png)
【深度学习实验】前馈神经网络(三):自定义多层感知机(激活函数logistic、线性层算Linear)
目录 一、实验介绍 二、实验环境 1. 配置虚拟环境 2. 库版本介绍 三、实验内容 0. 导入必要的工具包 1. 构建数据集 2. 激活函数logistic 3. 线性层算子 Linear 4. 两层的前馈神经网络MLP 5. 模型训练 一、实验介绍 本实验实现了一个简单的两层前馈神经网络 激活函数…...
![](https://www.ngui.cc/images/no-images.jpg)
HJ68 成绩排序
描述 给定一些同学的信息(名字,成绩)序列,请你将他们的信息按照成绩从高到低或从低到高的排列,相同成绩 都按先录入排列在前的规则处理。 例示: jack 70 peter 96 Tom 70 smith 67 从高到低…...
![](https://img-blog.csdnimg.cn/dd20c5b8359d469f9ca33d756fd0f6de.png#pic_center)
FPGA——UART串口通信
文章目录 前言一、UART通信协议1.1 通信格式2.2 MSB或LSB2.3 奇偶校验位2.4 UART传输速率 二、UART通信回环2.1 系统架构设计2.2 fsm_key2.3 baud2.4 sel_seg2.5 fifo2.6 uart_rx2.7 uart_tx2.8 top_uart2.9 发送模块时序分析2.10 接收模块的时序分析2.11 FIFO控制模块时序分析…...
![](https://img-blog.csdnimg.cn/img_convert/a18f6b607120430d56b5861d943e4751.jpeg)
华为云Stack的学习(七)
八、华为云Stack存储服务介绍 1.云硬盘EVS 云硬盘(Elastic Volume Service,EVS),又名磁盘,是一种虚拟块存储服务,主要为ECS(Elastic Cloud Server)和BMS(Bare Metal Se…...
![](https://www.ngui.cc/images/no-images.jpg)
安装k8s集群
一、前置环境配置 安装两台centos 实验环境,一台pc配有docker环境,有两个centsos7容器,其中一个容器作为master,一个作为node。如果master与node都是用默认端口,会存在冲突,所以在此基础上做细微的调整。…...
![](https://www.ngui.cc/images/no-images.jpg)
C++中编写没有参数和返回值的函数
C中编写没有参数和返回值的函数 返回值为 void 函数不需要将值返回给调用者。为了告诉编译器函数不返回值,返回类型为 void。例如: #include <iostream>// void means the function does not return a value to the caller void printHi() {std…...
![](https://img-blog.csdnimg.cn/da988ade4d9f4b76afac2387ca116a0d.png)
SWC 流程
一个arxml 存储SWC (可以存多个,也可以一个arxml存一个SWC)一个arxml 存储 composition (只能存一个)一个arxml 存储 system description (通过import dbc自动生成system) 存储SWC和composition的arxml文件分开&#…...
![](https://img-blog.csdnimg.cn/ed1a562cca2d4b06a134f4e30e0d403b.png)
怒刷LeetCode的第10天(Java版)
目录 第一题 题目来源 题目内容 解决方法 方法一:两次拓扑排序 第二题 题目来源 题目内容 解决方法 方法一:分治法 方法二:优先队列(Priority Queue) 方法三:迭代 第三题 题目来源 题目内容…...
![](https://img-blog.csdnimg.cn/76436d3b7f9c4f25944d3082da6eeb4c.png)
java框架-Springboot3-场景整合
文章目录 java框架-Springboot3-场景整合批量安装中间件NoSQL整合步骤RedisTemplate定制化 接口文档远程调用WebClientHttp Interface 消息服务 java框架-Springboot3-场景整合 批量安装中间件 linux安装中间件视频 NoSQL 整合redis视频 整合步骤 RedisTemplate定制化 Re…...
![](https://img-blog.csdnimg.cn/3cb16de5423c49c5a666ba4386b9943d.png)
在Bat To Exe Converter,修改为当异常结束或终止时,程序重新启动执行
在Bat To Exe Converter,修改为当异常结束或终止时,程序重新启动执行 .bat中的代码部分: .bat中的代码echo offpython E:\python\yoloProjectTestSmallLarge\detect.pypause,我想你能帮在Bat To Exe Converter,修改成…...
![](https://img-blog.csdnimg.cn/c949854929534e73a6a4dc3c0ad6a6d9.png)
PythonWeb服务器(HTTP协议)
一、HTTP协议与实现原理 HTTP(Hypertext Transfer Protocol,超文本传输协议)是一种用于在网络上传输超文本数据的协议。它是Web应用程序通信的基础,通过客户端和服务器之间的请求和响应来传输数据。在HTTP协议中连接客户与服务器的…...
![](https://img-blog.csdnimg.cn/4aef066debe84fcaaa0d1797eddadd6c.png)
Northstar 量化平台
基于 B/S 架构、可替代付费商业软件的一站式量化交易平台。具备历史回放、策略研发、模拟交易、实盘交易等功能。兼顾全自动与半自动的使用场景。 已对接国内期货股票、外盘美股港股。 面向程序员的量化交易软件,用于期货、股票、外汇、炒币等多种交易场景ÿ…...
![](https://img-blog.csdnimg.cn/317e7a72d4024881a5441e8c0be53d0c.png)
c语言进阶部分详解(经典回调函数qsort()详解及模拟实现)
大家好!上篇文章(c语言进阶部分详解(指针进阶2)_总之就是非常唔姆的博客-CSDN博客)我已经对回调函数进行了初步的讲解和一个简单的使用事例,鉴于篇幅有限没有进行更加详细的解释,今天便来补上。…...
![](https://www.ngui.cc/images/no-images.jpg)
win下 lvgl模拟器codeblocks配置
链接: 官方lvgl的codeblocks官方例子 下载慢的话,可能需要点工具。 需要下载的东西 https://github.com/lvgl/lv_port_win_codeblocks https://github.com/lvgl/lv_drivers/tree/4f98fddd2522b2bd661aeec3ba0caede0e56f96b https://github.com/lvgl/lvgl/tree/7a23…...
![](https://img-blog.csdnimg.cn/img_convert/da0902ca0b5274d681301e795ea5396c.gif)
Quartus出租车计价器VHDL计费器
名称:出租车计价器VHDL计费器 软件:Quartus 语言:VHDL 要求: 启动键start表示汽车启动,起步价7元,同时路程开始计数,停止键stop表示熄火,车费和路程均为0,当暂停键pa…...
![](https://img-blog.csdnimg.cn/84ceb1af8b364c1caf8f641a9a9637a3.png)
浅谈单元测试:测试和自动化中的利用
【软件测试面试突击班】如何逼自己一周刷完软件测试八股文教程,刷完面试就稳了,你也可以当高薪软件测试工程师(自动化测试) 浅谈单元测试是一件棘手的事情。我很确定测试人员在某个时候会抱怨开发人员没有正确地进行单元测试&…...
![](https://www.ngui.cc/images/no-images.jpg)
深度详解Java序列化
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…...
![](https://www.ngui.cc/images/no-images.jpg)
Linux下的网络编程——B/S模型HTTP(四)
前言: HTTP是基于B/S架构进行通信的,而HTTP的服务器端实现程序有httpd、nginx等,其客户端的实现程序主要是Web浏览器,例如Firefox、Internet Explorer、Google Chrome、Safari、Opera等,此外,客户端的命令…...
![](https://img-blog.csdnimg.cn/205b782db9254a2292f3307a16d1dd84.png)
Go语言入门篇
目录 一、基础数据类型 1.1 变量的定义方式 1.2 用%T输出变量的类型 二、复合数据类型 2.1 数组 2.1.2、数组的遍历 2.1.3 数组传参 2.2. 切片slice 2.2.1. 初始化切片 2.2.2. append向切片中追加元素 2.2.3. 切片的截取 2.3. map 2.3.1. map初始化 2.3.2. 添加和…...
![](https://img-blog.csdnimg.cn/49ed4c4348a34ff6a43a8eeb3b0c3162.png)
基于springboot+vue的青年公寓服务平台
博主主页:猫头鹰源码 博主简介:Java领域优质创作者、CSDN博客专家、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战 主要内容:毕业设计(Javaweb项目|小程序等)、简历模板、学习资料、面试题库、技术咨询 文末联系获取 项目介绍…...
![](https://www.ngui.cc/images/no-images.jpg)
Spring-ImportSelector接口功能介绍
ImportSelector接口是至spring中导入内部类或者外部类的核心接口,只需要其定义的方法内返回需要创建bean的class字符串就好了,比如:当我们引入一个外部share包,我们拿到里面的Class返回出去,就能得到这个bean,是多么神…...
![](https://img-blog.csdnimg.cn/53b7c293b2f94eb293caae3b0317ce6e.png)
YOLOv5如何训练自己的数据集
文章目录 前言1、数据标注说明2、定义自己模型文件3、训练模型4、参考文献 前言 本文主要介绍如何利用YOLOv5训练自己的数据集 1、数据标注说明 以生活垃圾数据集为例子 生活垃圾数据集(YOLO版)点击这里直接下载本文生活垃圾数据集 生活垃圾数据集组成&…...
![](https://img-blog.csdnimg.cn/3b3e03b17a1c481ca3478f97aff593e1.png)
李航老师《统计学习方法》第1章阅读笔记
1.1 统计学习 统计学习的特点 统计学习:计算机基于数据构建概率统计模型并运用模型对数据进行预测与分析 现在人们提及机器学习时,往往指统计机器学习,所以可以认为本书介绍的是机器学习方法 统计学习的对象 统计学习研究的对象是数据(data)…...
![](https://img-blog.csdnimg.cn/img_convert/5b51d24960a4533a68f4ed38059b1ca1.png)
基于微信小程序的背单词学习激励系统设计与实现(源码+lw+部署文档+讲解等)
文章目录 前言用户微信端的主要功能有:管理员的主要功能有:具体实现截图论文参考详细视频演示为什么选择我自己的网站自己的小程序(小蔡coding)有保障的售后福利 代码参考源码获取 前言 💗博主介绍:✌全网粉…...
![](https://img-blog.csdnimg.cn/d79ca58777464d128bfeb5f1f11320e1.png)
VScode调试复杂C/C++项目
以前都是用的VScode调试c/cpp的单个文件的编译和执行, 但是一遇到大型项目一般就用gdb了, gdb的调试效率和VScode差距还是比较大的, 但最近发现VScode其实也能调试复杂的cpp项目, 所以记录一下. 首先明确一下几点: 首先cpp文件需要经过编译, 生成可执行文件, 然后通过运行/调…...
![](https://img-blog.csdnimg.cn/img_convert/a08571f736dc04b5bef51cd09e8e3a0a.gif#pic_center)
【Hash表】字母异位词分组-力扣 49 题
💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kuan 的首页,持续学…...
![](https://img-blog.csdnimg.cn/631ca6ecb5214151a9843065aaa4669c.png)
展示日志log4.properties
log4.properties 1.log4.properties 此时文件主要用于展示日志的输出的级别的信息。 # Set root category priority to INFO and its only appender to CONSOLE. #log4j.rootCategoryINFO, CONSOLE debug info warn error fatal log4j.rootCategoryinfo, CONSO…...
![](https://img-blog.csdnimg.cn/581de8804ad843ce8f9a4cff02c9225a.png)
基于PLE结合卡尔曼滤波的RSSI定位算法matlab仿真
目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 MATLAB2022a 3.部分核心程序 ............................................................... for Num_xb Num_xb2Num_…...
![](https://www.ngui.cc/images/no-images.jpg)
uniapp项目实践总结(十九)版本更新和热更新实现方法
导语:当一个 APP 应用开发完成以后,就要上架应用商店,但有时候修改一些小问题或者推出一些活动,又不想频繁地提交应用商店审核,那么就可以使用应用内更新功能来进行应用的版本升级更新或热更新,下面就介绍一下实现的方法。 目录 准备工作原理分析实战演练案例展示准备工作…...
一起学数据结构(8)——二叉树中堆的代码实现
在上篇文章中提到,提到了二叉树中一种特殊的结构——完全二叉树。对于完全二叉树,在存储时,适合使用顺序存储。对于非完全二叉树,适合用链式存储。本文将给出完全二叉树的顺序结构以及相关的代码实现: 1. 二叉树的结构…...
![](/images/no-images.jpg)
网站排名软件推荐/免费网站推广软件下载
根据 3 月 2 日,Hired 发布的《2019 软件工程师状态》报告中指出,具有 Go 经验的候选人是迄今为止最具吸引力的,平均每位求职者会收到9 份面试邀请。 海风教育在线辅导0元一对一试听课等你来领取,领取课程方法: 1、私…...
![](/images/no-images.jpg)
网站什么时候恢复彩色/西安关键词排名优化
1,业务开发完毕,不要留尾巴2,给测试人员使用要完善3,转载于:https://blog.51cto.com/1681189/2135959...
![](http://www.jdon.com/concurrent/EJBartichect.gif)
网站建设定制开发/百度竞价多少钱一个点击
目前所有的B/S系统应用可以分为:有状态(statefull)和无状态(stateless)两大类别。 有状态是指在整个系统的处理过程中要保留记住一些信息,而无状态则相反,每次request都是独立的连接,不需要在每个request之间共享数据等等。 对于这…...
![](/images/no-images.jpg)
做企业形象网站/推广普通话奋进新征程手抄报
JS中超级简单xml转json 导入即可使用 在网上找了一大队xml转换json 都是又长有不可用,乱七八糟 最后只能自己些了 简单方便,传入即可使用 function xmljson(xml){let xml="<xml><appid><![CDATA[wxa30d0cf5b916]]></appid>\n<bank_typ…...
![](https://img-blog.csdnimg.cn/60c3b49a9806439dba41e31840223637.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBAQXlhbmUu,size_20,color_FFFFFF,t_70,g_se,x_16)
阿里云oss做网站/百度pc端提升排名
linklinklink 分析: xxx轴方向会经过mmm个方格 yyy轴方向会经过nnn个方格 但是斜着走会有重复经过的 也就是方格顶点 个数为 Gcd(n,m)Gcd(n,m)Gcd(n,m) 所以答案为 nm−Gcd(n,m)nm-Gcd(n,m)nm−Gcd(n,m) CODE: #include<iostream> #include<…...
![](/images/no-images.jpg)
检察院门户网站建设工作成效/互联网域名交易中心
所有题目均有五种语言实现。C实现目录、C++ 实现目录、Python实现目录、Java实现目录、JavaScript实现目录...