当前位置: 首页 > news >正文

【深度学习】ONNX模型多线程快速部署【基础】

【深度学习】ONNX模型CPU多线程快速部署【基础】

提示:博主取舍了很多大佬的博文并亲测有效,分享笔记邀大家共同学习讨论

文章目录

  • 【深度学习】ONNX模型CPU多线程快速部署【基础】
  • 前言
  • 搭建打包环境
  • python多线程并发简单教程
    • 基本教程
    • ONNX模型多线程并发
  • 打包成可执行文件
  • 总结


前言

之前的内容已经尽可能简单、详细的介绍CPU【Pytorch2ONNX】和GPU【Pytorch2ONNX】俩种模式下Pytorch模型转ONNX格式的流程,本博文根据自己的学习和需求进一步讲解ONNX模型的部署。onnx模型博主将使用PyInstaller进行打包部署,PyInstaller是一个用于将Python脚本打包成独立可执行文件的工具,【入门篇】中已经进行了最基本的使用讲解。之前博主在【快速部署ONNX模型】中分别介绍了CPU模式和GPU模式下onnx模型打包成可执行文件的教程,本博文将进一步介绍在CPU模式下使用多线程对ONNX模型进行快速部署。
系列学习目录:
【CPU】Pytorch模型转ONNX模型流程详解
【GPU】Pytorch模型转ONNX格式流程详解
【ONNX模型】快速部署
【ONNX模型】多线程快速部署
【ONNX模型】Opencv调用onnx


搭建打包环境

创建一个纯净的、没有多余的第三方库和模块的小型Python环境,抛开任何pytorch相关的依赖,只使用onnx模型完成测试。

# name 环境名、3.x Python的版本
conda create -n deploy python==3.10
# 激活环境
activate deploy 
# 安装onnx
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple onnx
# 安装GPU版
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple onnxruntime-gpu==1.15.0
# 下载安装Pyinstaller模块
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple Pyinstaller
# 根据个人情况安装包,博主这里需要安装piilow
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple Pillow

python多线程并发简单教程

多线程是一种并发编程的技术,通过同时执行多个线程来提高程序的性能和效率。python的内置模块提供了两个内置模块:thread和threading,thread是源生模块,是比较底层的模块,threading是扩展模块,是对thread做了一些封装,可以更加方便的被使用,所以只需要使用threading这个模块就能完成并发的测试。

基本教程

python3.x中通过threading模块有两种方法创建新的线程:通过threading.Thread(Target=executable Method)传递给Thread对象一个可执行方法(或对象);通过继承threading.Thread定义子类并重写run()方法。下面给出了俩种创建新线程方法的例子,读者可以运行一下加深理解。

  • 普通创建方式:threading.Thread进行创建多线程
    import threading
    import timedef myTestFunc():# 子线程开始print("the current threading %s is runing" % (threading.current_thread().name))time.sleep(1)   # 休眠线程# 子线程结束print("the current threading %s is ended" % (threading.current_thread().name))# 主线程
    print("the current threading %s is runing" % (threading.current_thread().name))
    # 子线程t1创建
    t1 = threading.Thread(target=myTestFunc)
    # 子线程t2创建
    t2 = threading.Thread(target=myTestFunc)t1.start()  # 启动线程
    t2.start()t1.join()  # join是阻塞当前线程(此处的当前线程时主线程) 主线程直到子线程t1结束之后才结束
    t2.join()
    # 主线程结束
    print("the current threading %s is ended" % (threading.current_thread().name))
    
  • 自定义线程:继承threading.Thread定义子类创建多线
    import threading
    import timeclass myTestThread(threading.Thread):  # 继承父类threading.Threaddef __init__(self, threadID, name, counter):threading.Thread.__init__(self)self.threadID = threadIDself.name = name# 把要执行的代码写到run函数里面,线程在创建后会直接运行run函数def run(self):print("the current threading %s is runing" % (self.name))print_time(self.name,5*self.threadID)print("the current threading %s is ended" % (self.name))def print_time(threadName, delay):time.sleep(delay)print("%s process at: %s" % (threadName, time.ctime(time.time())))# 主线程
    print("the current threading %s is runing" % (threading.current_thread().name))# 创建新线程
    t1 = myTestThread(1, "Thread-1", 1)
    t2 = myTestThread(2, "Thread-2", 2)# 开启线程
    t1.start()
    t2.start()# 等待线程结束
    t1.join()
    t2.join()print("the current threading %s is ended" % (threading.current_thread().name))
    

ONNX模型多线程并发

博主采用的是基础教程中普通创建方式创建新线程:将推理流程单独指定成目标函数,而后创建线程对象并指定目标函数,同一个推理session被分配给多个线程,多个线程会共享同一个onnx模型,这是因为深度学习模型的参数通常存储在模型对象中的共享内存中,并且模型的参数在运行时是可读写的,每个线程可以独立地使用模型对象执行任务,并且线程之间可以共享模型的状态和参数。

import onnxruntime as ort
import numpy as np
from PIL import Image
import time
import datetime
import sys
import os
import threadingdef composed_transforms(image):mean = np.array([0.485, 0.456, 0.406])  # 均值std = np.array([0.229, 0.224, 0.225])  # 标准差# transforms.Resize是双线性插值resized_image = image.resize((args['scale'], args['scale']), resample=Image.BILINEAR)# onnx模型的输入必须是np,并且数据类型与onnx模型要求的数据类型保持一致resized_image = np.array(resized_image)normalized_image = (resized_image/255.0 - mean) / stdreturn np.round(normalized_image.astype(np.float32), 4)def check_mkdir(dir_name):if not os.path.exists(dir_name):os.makedirs(dir_name)args = {'scale': 416,'save_results': True
}
def process_img(img_list,ort_session,image_path,mask_path,input_name,output_names):for idx, img_name in enumerate(img_list):img = Image.open(os.path.join(image_path, img_name + '.jpg')).convert('RGB')w, h = img.size#  对原始图像resize和归一化img_var = composed_transforms(img)# np的shape从[w,h,c]=>[c,w,h]img_var = np.transpose(img_var, (2, 0, 1))# 增加数据的维度[c,w,h]=>[bathsize,c,w,h]img_var = np.expand_dims(img_var, axis=0)start_each = time.time()prediction = ort_session.run(output_names, {input_name: img_var})time_each = time.time() - start_each# 除去多余的bathsize维度,NumPy变会PIL同样需要变换数据类型# *255替换pytorch的to_pilprediction = (np.squeeze(prediction[3]) * 255).astype(np.uint8)if args['save_results']:Image.fromarray(prediction).resize((w, h)).save(os.path.join(mask_path, img_name + '.jpg'))def main():# 线程个数num_cores = 10# 保存检测结果的地址input = sys.argv[1]# providers = ["CUDAExecutionProvider"]providers = ["CPUExecutionProvider"]model_path = "PFNet.onnx"ort_session = ort.InferenceSession(model_path, providers=providers)  # 创建一个推理sessioninput_name = ort_session.get_inputs()[0].name# 输出有四个output_names = [output.name for output in ort_session.get_outputs()]print('Load {} succeed!'.format('PFNet.onnx'))start = time.time()image_path = os.path.join(input, 'image')mask_path = os.path.join(input, 'mask')if args['save_results']:check_mkdir(mask_path)# 所有图片数量img_list = [os.path.splitext(f)[0] for f in os.listdir(image_path) if f.endswith('jpg')]# 每个线程被均匀分配的图片数量total_images = len(img_list)start_index = 0images_per_list = total_images // num_cores# 理解成线程池Thread_list = []for i in range(num_cores):end_index = start_index + images_per_listimg_l = img_list[start_index:end_index]start_index = end_index# 分配线程t = threading.Thread(target=process_img, args=(img_l,ort_session, image_path, mask_path,input_name,output_names))# 假如线程池Thread_list.append(t)# 线程执行t.start()# 这里是为了阻塞主线程for t in Thread_list:t.join()end = time.time()print("Total Testing Time: {}".format(str(datetime.timedelta(seconds=int(end - start)))))
if __name__ == '__main__':main()

线程的数量根据需求而定,不是越多越好。


打包成可执行文件

  • 在cpu模式下打包可执行文件:
    pyinstaller -F run_t.py
    
  • 在gpu模式下打包可执行文件:
    pyinstaller -F run_t.py --add-binary "D:/ProgramData/Anaconda3_data/envs/deploy/Lib/site-packages/onnxruntime/capi/onnxruntime_providers_cuda.dll;./onnxruntime/capi" --add-binary "D:/ProgramData/Anaconda3_data/envs/deploy/Lib/site-packages/onnxruntime/capi/onnxruntime_providers_shared.dll;./onnxruntime/capi"
    

    详细的过程和结果此前已经讲解过了,可以查看博主的博文【快速部署ONNX模型】。图片数量较多时,对比此前的执行速度,多线程的执行速度快了俩倍以上。

总结

尽可能简单、详细的介绍ONNX模型多线程快速部署过程。

相关文章:

【深度学习】ONNX模型多线程快速部署【基础】

【深度学习】ONNX模型CPU多线程快速部署【基础】 提示:博主取舍了很多大佬的博文并亲测有效,分享笔记邀大家共同学习讨论 文章目录 【深度学习】ONNX模型CPU多线程快速部署【基础】前言搭建打包环境python多线程并发简单教程基本教程ONNX模型多线程并发 打包成可执行文件总结 前…...

Python 同、异步HTTP客户端封装:性能与简洁性的较量

一、前言 引入异步编程趋势:Python的异步编程正变得越来越流行。在过去,同步的HTTP请求已经不足以满足对性能的要求。异步HTTP客户端库的流行:目前,有许多第三方库已经实现了异步HTTP客户端,如aiohttp和httpx等。然而…...

无代码赋能数字化,云表搭桥铺路链接“数据孤岛”

什么是信息孤岛 企业数字化转型过程中,信息孤岛是一个突出的问题。这种情况发生的原因是,企业内部使用了多种应用软件,时间一长,员工在不同的系统中积累了大量的企业数据资产。然而,由于这些系统之间的数据无法互通&am…...

无需公网IP,实现公网SSH远程登录MacOS【内网穿透】

目录 前言 1. macOS打开远程登录 2. 局域网内测试ssh远程 3. 公网ssh远程连接macOS 3.1 macOS安装配置cpolar 3.2 获取ssh隧道公网地址 3.3 测试公网ssh远程连接macOS 4. 配置公网固定TCP地址 4.1 保留一个固定TCP端口地址 4.2 配置固定TCP端口地址 5. 使用固定TCP端…...

网络爬虫学习笔记 1 HTTP基本原理

HTTP原理 ~~~~~ HTTP(Hyper Text Transfer Protocol,超文本传输协议)是一种使用最为广泛的网络请求方式,常见于在浏览器输入一个地址。 1. URI和URL URL(Universal Resource Locator,统一资源定位器&…...

113. 路径总和ii

力扣题目链接(opens new window) 给定一个二叉树和一个目标和,找到所有从根节点到叶子节点路径总和等于给定目标和的路径。 说明: 叶子节点是指没有子节点的节点。 示例: 给定如下二叉树,以及目标和 sum 22, 在路径总和题目的基础上&…...

百度APP iOS端包体积50M优化实践(六)无用方法清理

一、前言 百度APP包体积经过一期优化,如无用资源清理,无用类下线,Xcode编译相关优化,体积已经有了明显的减少。但是优化后APP包体积在iPhone11上仍有350M的空间占用。与此同时百度APP作为百度的旗舰APP,业务迭代非常多…...

MySQL了解视图View (视图篇 一)

视图View是什么? MySQL的视图是一种虚拟表,它是基于一个或多个表的查询结果构建而成的。视图并不实际存储数据,而是根据定义的查询逻辑动态生成结果。 ----------------------------------- 视图的特点: - 虚拟表:…...

使用applescript自动化trilium的数学公式环境

众所周知,trilium什么都好,就是对数学公式的支持以及markdown格式的导入导出功能太拉了,而最拉的时刻当属把这两个功能结合起来的时候:导入markdown文件之后,原来的数学公式全没了,需要一个一个手动用ctrlm…...

idea中maven项目打包成jar,报错没有主清单属性解决方法

使用idea自带的打包可能会出现一下问题 在pom.xml中引入下面的依赖&#xff0c;即可解决 <build><plugins><plugin><groupId>org.springframework.boot</groupId><artifactId>spring-boot-maven-plugin</artifactId><executions&…...

Caddy Web服务器深度解析与对比:Caddy vs. Nginx vs. Apache

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…...

基于PHP+MySQL的家教平台

摘要 设计和实现基于PHP的家教平台是一个复杂而令人兴奋的任务。这个项目旨在为学生、家长和教师提供一个便捷的在线学习和教授平台。本文摘要将概述这个项目的关键方面&#xff0c;包括用户管理、课程管理、支付处理、评价系统、通知系统和安全性。首先&#xff0c;我们将建立…...

吉利微型纯电,5 万元的快乐

熊猫骑士作为一款主打下层市场的迷你车型&#xff0c;吉利熊猫骑士剑指宝骏悦也&#xff0c;五菱宏光 MINI 等热门选手。 9 月 15 日&#xff0c;吉利熊猫骑士正式上市&#xff0c;售价为 5.39 万&#xff0c;限时优享价 4 .99 万元。价格和配置上对这个级别定位的战略车型有一…...

Gitee使用方法

Gitee是一个基于 Git 的代码托管和协作平台&#xff0c;具有免费、稳定等特点&#xff0c;并且能够与国内的Gitee社区、码云等服务相结合使用。 以下是使用Gitee的主要步骤&#xff1a; 注册账号&#xff1a;访问Gitee官网&#xff0c;点击“注册”按钮&#xff0c;填写注册信…...

前端适配笔记本缩放125%,150%导致页面错乱问题

由于前端在开发时使用的都是标准ui设计图&#xff0c;基本都是按照所以1920*1080&#xff0c; 而小屏幕笔记本由于分辨率高&#xff0c;所以导致的显示元素变小&#xff0c;因此很多笔记本的默认显示都是放大125%或者150%。 如果页面比较简单就让多余的空白单边扩展&#xff0c…...

多线程的学习中篇下

volatile 关键字 volatile 能保证内存可见性 volatile 修饰的变量, 能够保证 “内存可见性” 示例代码: 运行结果: 当输入1(1是非O)的时候,但是t1这个线程并沿有结束循环, 同时可以看到,t2这个线程已经执行完了,而t1线程还在继续循环. 这个情况,就叫做内存可见性问题 ~~ 这…...

贪心算法-拼接字符串使得字典顺序最小问题

题目1 给定一个由字符串组成的数组strs&#xff0c;必须把所有字符串拼接起来&#xff0c;返回所有可能的拼接结果中&#xff0c;字典序最小的结果 思路&#xff1a;对数组排序&#xff0c;排序规则是对ab和ba的字符串进行比较大小&#xff0c;返回较小的顺序放到数组中最后将…...

Linux--互斥锁

一、与互斥锁相关api **互斥量&#xff08;mutex&#xff09;**从本质上来说是一把锁。在访问共享资源前对互斥量进行加锁&#xff0c;在访问完成后释放互斥量。对互斥量进行枷锁后&#xff0c;任何其他试图再次对互斥量加锁的线程将会被阻塞直到当前线程释放该互斥锁。如果释…...

[2023.09.21]:源码已上传,供大家了解Rust Yew的前后端开发

这个资源是Rust的源代码压缩包&#xff0c;供大家了解Rust Yew的前后端开发。 资源中的代码非常简洁易懂&#xff0c;虽然离商用场景还有一段距离&#xff0c;但是涵盖了前端的组件搭建、事件通信和反向代理&#xff0c;以及后端的Restful API的路由、功能实现和数据库访问。此…...

时序分解 | Matlab实现CEEMD互补集合经验模态分解时间序列信号分解

时序分解 | Matlab实现CEEMD互补集合经验模态分解时间序列信号分解 目录 时序分解 | Matlab实现CEEMD互补集合经验模态分解时间序列信号分解效果一览基本介绍程序设计参考资料 效果一览 基本介绍 Matlab实现CEEMD互补集合经验模态分解时间序列信号分解 1.分解效果图 &#xff0…...

大话软工笔记—需求分析概述

需求分析&#xff0c;就是要对需求调研收集到的资料信息逐个地进行拆分、研究&#xff0c;从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要&#xff0c;后续设计的依据主要来自于需求分析的成果&#xff0c;包括: 项目的目的…...

Spark 之 入门讲解详细版(1)

1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室&#xff08;Algorithms, Machines, and People Lab&#xff09;开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目&#xff0c;8个月后成为Apache顶级项目&#xff0c;速度之快足见过人之处&…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建

制造业采购供应链管理是企业运营的核心环节&#xff0c;供应链协同管理在供应链上下游企业之间建立紧密的合作关系&#xff0c;通过信息共享、资源整合、业务协同等方式&#xff0c;实现供应链的全面管理和优化&#xff0c;提高供应链的效率和透明度&#xff0c;降低供应链的成…...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)

🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

python执行测试用例,allure报乱码且未成功生成报告

allure执行测试用例时显示乱码&#xff1a;‘allure’ &#xfffd;&#xfffd;&#xfffd;&#xfffd;&#xfffd;ڲ&#xfffd;&#xfffd;&#xfffd;&#xfffd;ⲿ&#xfffd;&#xfffd;&#xfffd;Ҳ&#xfffd;&#xfffd;&#xfffd;ǿ&#xfffd;&am…...

python报错No module named ‘tensorflow.keras‘

是由于不同版本的tensorflow下的keras所在的路径不同&#xff0c;结合所安装的tensorflow的目录结构修改from语句即可。 原语句&#xff1a; from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后&#xff1a; from tensorflow.python.keras.lay…...

通过MicroSip配置自己的freeswitch服务器进行调试记录

之前用docker安装的freeswitch的&#xff0c;启动是正常的&#xff0c; 但用下面的Microsip连接不上 主要原因有可能一下几个 1、通过下面命令可以看 [rootlocalhost default]# docker exec -it freeswitch fs_cli -x "sofia status profile internal"Name …...

VisualXML全新升级 | 新增数据库编辑功能

VisualXML是一个功能强大的网络总线设计工具&#xff0c;专注于简化汽车电子系统中复杂的网络数据设计操作。它支持多种主流总线网络格式的数据编辑&#xff08;如DBC、LDF、ARXML、HEX等&#xff09;&#xff0c;并能够基于Excel表格的方式生成和转换多种数据库文件。由此&…...

【Post-process】【VBA】ETABS VBA FrameObj.GetNameList and write to EXCEL

ETABS API实战:导出框架元素数据到Excel 在结构工程师的日常工作中,经常需要从ETABS模型中提取框架元素信息进行后续分析。手动复制粘贴不仅耗时,还容易出错。今天我们来用简单的VBA代码实现自动化导出。 🎯 我们要实现什么? 一键点击,就能将ETABS中所有框架元素的基…...