当前位置: 首页 > news >正文

文心一言 VS 讯飞星火 VS chatgpt (102)-- 算法导论9.3 8题

八、用go语言,设 X[1…n]和 Y[1…n]为两个数组,每个都包含n个有序的元素。请设计一个 O(lgn)时间的算法来找出数组 X和Y中所有 2n 个元素的中位数。

文心一言:

要在 O(lgn) 时间内找出两个有序数组 X 和 Y 中所有元素的中位数,可以使用二分查找算法。以下是用 Go 语言实现的算法:

package main  import (  "fmt"  "math"  
)  func findMedianSortedArrays(nums1 []int, nums2 []int) float64 {  n, m := len(nums1), len(nums2)  if n > m {  nums1, nums2 = nums2, nums1  n, m = m, n  }  imin, imax, halfLen := 0, n, (n+m+1)/2  for imin <= imax {  i := (imin + imax) / 2  j := halfLen - i  if i < n && nums2[j-1] > nums1[i] {  i++  } else if i > 0 && nums1[i-1] > nums2[j] {  i--  } else {  if i == 0 { maxOfLeft := nums2[j-1] } else if j == 0 { maxOfLeft := nums1[i-1] } else { maxOfLeft := max(nums1[i-1], nums2[j-1]) }  if (n+m)%2 == 1 {  return float64(maxOfLeft)  }  if i == n { minOfRight := nums2[j] } else if j == m { minOfRight := nums1[i] } else { minOfRight := min(nums1[i], nums2[j]) }  return float64((maxOfLeft+minOfRight) / 2)  }  }  
}  func max(a, b int) int {  if a > b {  return a  }  return b  
}  func min(a, b int) int {  if a < b {  return a  }  return b  
}  func main() {  nums1 := []int{1, 3}  nums2 := []int{2, 4}  median := findMedianSortedArrays(nums1, nums2)  fmt.Println("The median of the two arrays is:", median)  
}

这个算法的思路是将问题转化为在 O(lgn) 时间内寻找一个合适的分割点,将两个数组分成两部分,使得左侧所有元素小于等于右侧所有元素,同时左侧元素数量与右侧元素数量之差不超过 1。然后根据分割点的位置,确定中位数是左侧最大元素还是右侧最小元素,或者是它们的平均值。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

讯飞星火:

为了在 O(lgn) 时间内找到两个数组 X 和 Y 中所有 2n 个元素的中位数,我们可以使用二分查找算法。以下是使用 Go 语言实现的代码:

package mainimport "fmt"func findMedianSortedArrays(nums1, nums2 []int) float64 {totalLength := len(nums1) + len(nums2)if totalLength%2 == 1 {return float64(findKthElement(nums1, 0, nums2, 0, totalLength/2))} else {return float64(findKthElement(nums1, 0, nums2, 0, totalLength/2-1))}
}func findKthElement(nums1, start1, nums2, start2 int, k int) int {if start1 >= len(nums1) && start2 >= len(nums2) {return -1}if start1 < len(nums1) && nums1[start1] > nums2[start2] {return findKthElement(nums1, start1+1, nums2, start2, k)} else if start2 < len(nums2) && nums1[start1] <= nums2[start2] {return findKthElement(nums1, start1, nums2, start2+1, k)} else {if k == 1 {return min(nums1[start1], nums2[start2])} else if k == 2 {return max(nums1[start1], nums2[start2])} else {return (nums1[start1] + nums2[start2]) / 2.0}}
}func min(a, b int) int {if a < b {return a}return b
}func max(a, b int) int {if a > b {return a}return b
}func main() {nums1 := []int{1, 3}nums2 := []int{2}fmt.Println(findMedianSortedArrays(nums1, nums2)) // 输出:2.0
}

这个算法首先计算两个数组的总长度,然后根据总长度是奇数还是偶数来确定中位数的位置。接下来,我们使用递归函数 findKthElement 来找到第 k 小的元素。在这个函数中,我们比较两个数组的第一个元素,然后将较小的元素所在的数组的起始索引加一,同时更新 k 的值。当其中一个数组的所有元素都被比较过后,我们根据 k 的值返回相应的结果。

在这里插入图片描述

在这里插入图片描述

360智脑:

以下是使用go语言实现找出两个有序数组中位数的算法:

func findMedianSortedArrays(nums1 []int, nums2 []int) int {m, n := len(nums1), len(nums2)if m == 0 || n == 0 {return 0}if m > n {nums1, nums2 = nums2, nums1m, n = n, m}// 合并两个有序数组i, j, k := m-1, n-1, 0for ; i <= m && j <= n; i, j, k = i+1, j+1, k+1 {if nums1[i] < nums2[j] {nums1[k] = nums1[i]i++} else if nums1[i] > nums2[j] {nums2[k] = nums2[j]j++} else {nums1[k] = nums2[j]j++}}// 计算中位数if i == m {return nums1[j]} else if j == n {return nums2[i]} else {return (nums1[i] + nums2[j]) / 2}
}

该算法的时间复杂度为 O(lgn),其中 n 是数组的长度。

在这里插入图片描述

在这里插入图片描述

智谱清言:

为了找到数组 X 和 Y 中所有 2n 个元素的中位数,我们可以使用快速排序(quicksort)算法。快速排序的时间复杂度为 O(nlogn),但我们可以通过随机选取一个元素作为基准值(pivot)来将时间复杂度降低到 O(lgn)。以下是使用 Go 语言实现的算法:

package main
import (  "fmt"  "math/rand"  "time"  
)
func main() {  rand.Seed(time.Now().UnixNano())x := []int{1, 3, 5, 7, 9}  y := []int{2, 4, 6, 8, 10}median := findMedian(x, y)  fmt.Println("Median:", median)  
}
func findMedian(x, y []int) float64 {  n := len(x) + len(y)// 快速排序找到数组 x 中的中位数  iX := partition(x, 0, n-1)// 快速排序找到数组 y 中的中位数  iY := partition(y, 0, n-1)// 计算两个中位数的平均值  return float64(x[iX]+y[iY]) / 2  
}
func partition(arr []int, low, high int) int {  rand.Shuffle(len(arr), func(i, j int) { arr[i], arr[j] = arr[j], arr[i] })pivot := arr[high]  i := low - 1for j := low; j < high; j++ {  if arr[j] <= pivot {  i++  arr[i], arr[j] = arr[j], arr[i]  }  }arr[i+1], arr[high] = arr[high], arr[i+1]return i + 1  
}

这个程序首先对数组 x 和 y 进行快速排序找到各自的中位数,然后将两个中位数相加并除以 2 得到最终的中位数。为了降低时间复杂度,我们在每次排序时都随机选取一个元素作为基准值(pivot)。

在这里插入图片描述

在这里插入图片描述

通义千问:

这个问题可以通过合并两个有序数组并找到其中位数来解决。以下是一个使用Go语言实现的示例:

package mainimport ("fmt""sort"
)func findMedianSortedArrays(nums1 []int, nums2 []int) float64 {if len(nums1) > len(nums2) {nums1, nums2 = nums2, nums1}nums := make([]int, 0, len(nums1)+len(nums2))nums = append(nums, nums1...)nums = append(nums, nums2...)sort.Ints(nums)if len(nums)%2 == 0 {return float64(nums[len(nums)/2-1]+nums[len(nums)/2]) / 2.0} else {return float64(nums[len(nums)/2])}
}func main() {nums1 := []int{1, 3}nums2 := []int{2}fmt.Println(findMedianSortedArrays(nums1, nums2)) // Output: 2nums1 = []int{1, 2}nums2 = []int{3, 4}fmt.Println(findMedianSortedArrays(nums1, nums2)) // Output: 2.5
}

这个算法首先检查两个数组的长度,如果第一个数组较短,就交换两个数组。然后,它将两个数组合并到一个新的数组中,并对这个数组进行排序。最后,它检查数组的长度是否为偶数,如果是,就返回中间两个元素的平均值,否则就返回中间的元素。

这个算法的时间复杂度为O((m+n)log(m+n)),其中m和n分别是两个数组的长度。但是,由于我们只关心中位数,所以我们实际上只需要找到数组的中间元素,这可以在O(log(m+n))的时间内完成。

在这里插入图片描述

在这里插入图片描述

天工:

可以使用类似于快速选择算法的方法来解决这个问题。具体来说,可以通过以下步骤找到数组 X 和 Y 中所有 2n 个元素的中位数:

  1. 将数组 X 和 Y 合并成一个新的数组 Z,其中 Z[k] = X[k],k = 1, 2, …, n,Z[k] = Y[k-n],k = n+1, n+2, …, 2n。

  2. 使用快速选择算法找到数组 Z 中的中位数,时间复杂度为 O(lgn)。

  3. 根据中位数的位置可以确定数组 X 和 Y 中的中位数。如果中位数在数组 X 中,则数组 X 和 Y 的中位数相同;否则,数组 Y 中的中位数更大。

具体实现可以参考以下代码:

func findMedianSortedArrays(X, Y []int) float64 {n := len(X)m := len(Y)if n > m {X, Y = Y, Xn, m = m, n}Z := make([]int, 2*n)copy(Z, X)copy(Z[n:], Y)medianIndex := quickSelect(Z, n, 2*n-1)if medianIndex == n {return float64(X[n-1])} else if medianIndex == n+m {return float64(Y[m-1])} else {return float64(Z[medianIndex])}
}func quickSelect(arr []int, left, right int) int {if left == right {return left}pivot := arr[(left+right)/2]i, j := left,rightfor i < j {for arr[i] <> pivot {i++}for j > i && arr[j] == pivot {j--}if i < j {arr[i], arr[j] = arr[j], arr[i]i++j--}else if i == j {return j}}return j
}

该算法的时间复杂度为 O(lgn),空间复杂度为 O(n)。

在这里插入图片描述

在这里插入图片描述

chatgpt:

可以使用类似于归并排序的思想来解决这个问题。

首先,我们可以找出X和Y的中位数候选集合,即分别找出X和Y中位置为n和n+1的元素。
这两个元素的下标分别为m1 = (n+1)/2 和 m2 = n/2,可以确定这两个位置元素 X[m1] <= X[m2] 和 Y[m1] <= Y[m2]。

然后,我们可以根据X和Y的中位数候选集合来确定中位数。

如果 X[m2] < Y[m1] ,则中位数一定在X的后半部分和Y的前半部分。因此,我们可以将X[m1:n]和Y[1:m1]作为新的候选集合来进行下一轮迭代。

如果 Y[m2] < X[m1] ,则中位数一定在Y的后半部分和X的前半部分。因此,我们可以将Y[m1:n]和X[1:m1]作为新的候选集合来进行下一轮迭代。

如果 X[m2] = Y[m1] 或 X[m2] = Y[m1],则中位数一定是 X[m2] 或 Y[m1]。可以直接返回其中一个作为中位数。

重复以上步骤,直到找到中位数或候选集合中只剩下一个元素为止。

以下是使用Go语言实现的示例代码:

func findMedian(X []int, Y []int) float64 {n := len(X)m1 := n / 2m2 := (n + 1) / 2for m1 > 0 && m1 < n {if X[m1] <= Y[m2] && Y[m1] <= X[m2] {// 找到中位数if (n+n)%2 == 0 {return float64((max(X[m1], Y[m1]) + min(X[m2], Y[m2])) / 2)} else {return float64(min(X[m2], Y[m2]))}} else if X[m1] > Y[m2] {// 中位数在X的前半部分和Y的后半部分n = m1m1 = n / 2m2 = (n + 1) / 2} else {// 中位数在Y的前半部分和X的后半部分n = m1m1 = (n + 1) / 2m2 = n / 2}}// 只剩下一个元素时,返回该元素作为中位数if m1 == 0 {return float64(min(X[m2], Y[m2]))} else {return float64(max(X[m1], Y[m1]))}
}func max(a, b int) int {if a > b {return a} else {return b}
}func min(a, b int) int {if a < b {return a} else {return b}
}

以上代码中,findMedian 函数接受两个有序数组 X 和 Y,并返回它们的中位数。其中,max 和 min 函数分别为获取最大值和最小值的辅助函数。

由于每次迭代都将候选集合的大小减半,因此总的时间复杂度为O(log n)。

在这里插入图片描述

在这里插入图片描述

相关文章:

文心一言 VS 讯飞星火 VS chatgpt (102)-- 算法导论9.3 8题

八、用go语言&#xff0c;设 X[1…n]和 Y[1…n]为两个数组&#xff0c;每个都包含n个有序的元素。请设计一个 O(lgn)时间的算法来找出数组 X和Y中所有 2n 个元素的中位数。 文心一言&#xff1a; 要在 O(lgn) 时间内找出两个有序数组 X 和 Y 中所有元素的中位数&#xff0c;可…...

axios添加缓存请求,防止多次请求,单页面多个同一组件造成多次请求解决方案

在axios中&#xff0c;添加 const cacheMap {};响应拦截添加 try {// 删除缓存const api res.config.url.replace(process.env.VUE_APP_BASE_API, "");if (cacheMap.hasOwnProperty(api)) {delete cacheMap[api];}} catch (err) {}创建两个请求方法 /*** Get缓存…...

Java包装类与自动拆箱装箱

有的时候博客内容会有变动&#xff0c;首发博客是最新的&#xff0c;其他博客地址可能会未同步,认准https://blog.zysicyj.top 首发博客地址[1] 面试题手册[2] 系列文章地址[3] 1. 什么是 Java 包装类和自动拆箱装箱&#xff1f; Java 中的基本数据类型&#xff08;如 int、cha…...

基于SpringBoot网上超市的设计与实现【附万字文档(LW)和搭建文档】

主要功能 前台登录&#xff1a; 注册用户&#xff1a;用户名、密码、姓名、联系电话 用户&#xff1a; ①首页、商品信息推荐、商品资讯、查看更多 ②商品信息、商品详情、评论、点我收藏、添加购物车、立即购买 ③个人中心、余额、点我充值、更新信息、我的订单、我的地址、我…...

二、C++项目:仿muduo库实现并发服务器之时间轮的设计

文章目录 一、为什么要设计时间轮&#xff1f;&#xff08;一&#xff09;简单的秒级定时任务实现&#xff1a;&#xff08;二&#xff09;Linux提供给我们的定时器&#xff1a;1.原型2.例子 二、时间轮&#xff08;一&#xff09;思想&#xff08;一&#xff09;代码 一、为什…...

计算机竞赛 深度学习OCR中文识别 - opencv python

文章目录 0 前言1 课题背景2 实现效果3 文本区域检测网络-CTPN4 文本识别网络-CRNN5 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; **基于深度学习OCR中文识别系统 ** 该项目较为新颖&#xff0c;适合作为竞赛课题方向&#xff0c;…...

蓝桥等考Python组别五级003

第一部分:选择题 1、Python L5 (15分) 表达式“a >= b”等价于下面哪个表达式?( ) a > b and a == ba > b or a == ba < b and a == ba < b or a > b正确答案:B 2、Python L5 (15分) 当x是偶数时,下面哪个表达式的值一定是True?( …...

学之思项目第一天-完成项目搭建

一、前端 拉下前端代码执行 npm i 然后执行npm run serve就行了 二、后端 搭建父子模块 因为这个涉及到前台以及后台管理所以使用父子模块 并且放置一个公共模块&#xff0c;放置公共的依赖以及公共的代码 2.1 搭建父子工程 这个可以使用直接一个个的maven模块&#xff…...

pandas--->CSV / JSON

csv CSV&#xff08;Comma-Separated Values&#xff0c;逗号分隔值&#xff0c;有时也称为字符分隔值&#xff0c;因为分隔字符也可以不是逗号&#xff09;&#xff0c;其文件以纯文本形式存储表格数据&#xff08;数字和文本&#xff09;。 CSV 是一种通用的、相对简单的文…...

LeetCode算法二叉树—116. 填充每个节点的下一个右侧节点指针

目录 116. 填充每个节点的下一个右侧节点指针 题解&#xff1a; 代码&#xff1a; 运行结果&#xff1a; 给定一个 完美二叉树 &#xff0c;其所有叶子节点都在同一层&#xff0c;每个父节点都有两个子节点。二叉树定义如下&#xff1a; struct Node {int val;Node *left;N…...

二、2023.9.28.C++基础endC++内存end.2

文章目录 17、说说new和malloc的区别&#xff0c;各自底层实现原理。18、 说说const和define的区别。19、 说说C中函数指针和指针函数的区别&#xff1f;20、 说说const int *a, int const *a, const int a, int *const a, const int *const a分别是什么&#xff0c;有什么特点…...

DevSecOps 将会嵌入 DevOps

通常人们在一个项目行将结束时才会考虑到安全&#xff0c;这么做会导致很多问题&#xff1b;将安全融入到DevOps的工作流中已产生了积极结果。 DevSecOps&#xff1a;安全正当时 一直以来&#xff0c;开发人员在构建软件时认为功能需求优先于安全。虽然安全编码实践起着重要作…...

不同管径地下管线的地质雷达响应特征分析

不同管径地下管线的地质雷达响应特征分析 前言 以混凝土管线为例&#xff0c;建立了不同管径的城市地下管线模型&#xff0c;进行二维地质雷达正演模拟&#xff0c;分析不同管径管线的地质雷达响应特征。 文章目录 不同管径地下管线的地质雷达响应特征分析前言1、管径50cm2、…...

【接口测试学习】白盒测试 接口测试 自动化测试

一、什么是白盒测试 白盒测试是一种测试策略&#xff0c;这种策略允许我们检查程序的内部结构&#xff0c;对程序的逻辑结构进行检查&#xff0c;从中获取测试数据。白盒测试的对象基本是源程序&#xff0c;所以它又称为结构测试或逻辑驱动测试&#xff0c;白盒测试方法一般分为…...

7.网络原理之TCP_IP(下)

文章目录 4.传输层重点协议4.1TCP协议4.1.1TCP协议段格式4.1.2TCP原理4.1.2.1确认应答机制 ACK&#xff08;安全机制&#xff09;4.1.2.2超时重传机制&#xff08;安全机制&#xff09;4.1.2.3连接管理机制&#xff08;安全机制&#xff09;4.1.2.4滑动窗口&#xff08;效率机制…...

Docker Dockerfile解析

Dockerfile是什么 Dockerfile是用来构建Docker镜像的文本文件&#xff0c;是由一条条构建镜像所需的指令和参数构成的脚本。 官网&#xff1a;Dockerfile reference | Docker Docs 构建三步骤&#xff1a; 编写Dockerfile文件docker build命令构建镜像docker run依镜像运行容…...

浏览器从输入URL到页面展示这个过程中都经历了什么

一. URL输入 URL是统一资源定位符&#xff0c;用于定位互联网上的资源&#xff0c;俗称网址。我们在地址栏输入网址后敲下回车&#xff0c;浏览器会对输入的信息进行以下判断&#xff1a; 1. 检查输入的内容是否是一个合法的URL连接 2. 如果合法的话&#xff0c;则会判断URL…...

2023-09-22 monetdb-事务管理-乐观并发控制-记录

摘要: 2023-09-22 monetdb-事务管理-记录 相关文档: Transaction Management | MonetDB Docs https://en.wikipedia.org/wiki/Optimistic_concurrency_control monetdb事务管理: MonetDB/SQL 支持以 START TRANSACTION 标记并以 COMMIT 或 ROLLBACK 关闭的多语句事务方案。如果…...

蓝桥等考Python组别四级008

第一部分:选择题 1、Python L4 (15分) 字符“D”的ASCII码值比字符“F”的ASCII码值小( )。 1234正确答案:B 2、Python L4 (15分) 下面的Python变量名正…...

SpringMVC 学习(二)Hello SpringMVC

3. Hello SpringMVC (1) 新建 maven 模块 springmvc-02-hellomvc (2) 确认依赖的导入 (3) 配置 web.xml <!--web/WEB-INF/web.xml--> <?xml version"1.0" encoding"UTF-8"?> <web-app xmlns"http://xmlns.jcp.org/xml/ns/javaee…...

label-studio的使用教程(导入本地路径)

文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad&#xff08;Adaptive Gradient Algorithm&#xff09;是一种自适应学习率的优化算法&#xff0c;由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率&#xff0c;适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

vue3 字体颜色设置的多种方式

在Vue 3中设置字体颜色可以通过多种方式实现&#xff0c;这取决于你是想在组件内部直接设置&#xff0c;还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法&#xff1a; 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)

笔记整理&#xff1a;刘治强&#xff0c;浙江大学硕士生&#xff0c;研究方向为知识图谱表示学习&#xff0c;大语言模型 论文链接&#xff1a;http://arxiv.org/abs/2407.16127 发表会议&#xff1a;ISWC 2024 1. 动机 传统的知识图谱补全&#xff08;KGC&#xff09;模型通过…...

聊一聊接口测试的意义有哪些?

目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开&#xff0c;首…...

《C++ 模板》

目录 函数模板 类模板 非类型模板参数 模板特化 函数模板特化 类模板的特化 模板&#xff0c;就像一个模具&#xff0c;里面可以将不同类型的材料做成一个形状&#xff0c;其分为函数模板和类模板。 函数模板 函数模板可以简化函数重载的代码。格式&#xff1a;templa…...

保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek

文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama&#xff08;有网络的电脑&#xff09;2.2.3 安装Ollama&#xff08;无网络的电脑&#xff09;2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...

nnUNet V2修改网络——暴力替换网络为UNet++

更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...

《信号与系统》第 6 章 信号与系统的时域和频域特性

目录 6.0 引言 6.1 傅里叶变换的模和相位表示 6.2 线性时不变系统频率响应的模和相位表示 6.2.1 线性与非线性相位 6.2.2 群时延 6.2.3 对数模和相位图 6.3 理想频率选择性滤波器的时域特性 6.4 非理想滤波器的时域和频域特性讨论 6.5 一阶与二阶连续时间系统 6.5.1 …...