干货:数据仓库基础知识(全)
1、什么是数据仓库?
权威定义:数据仓库是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合,用于支持管理决策。
1)数据仓库是用于支持决策、面向分析型数据处理;
2)对多个异构的数据源有效集成,集成后按照主题进行重组,并包含历史数据,而且存放在数据仓库中的数据一般不再修改。
面对大数据的多样性,在存储和处理这些大数据时,我们就必须要知道两个重要的技术。
分别是:数据仓库技术、Hadoop。当数据为结构化数据,来自传统的数据源,则采用数据仓库技术来存储和处理这些数据,如下图:
2、数据仓库和数据库的区别?
从目标、用途、设计来说。
1)数据库是面向事务处理的,数据是由日常的业务产生的,并且是频繁更新的;数据仓库是面向主题的,数据来源多样化,经过一定的规则转换得到的,用于分析和决策;
2)数据库一般用来存储当前事务性数据,如交易数据;数据仓库一般存储的是历史数据;
3)数据库设计一般符合三范式,有最大的精确度和最小的冗余度,有利于数据的插入;数据仓库设计一般不符合三范式,有利于查询。
3、如何构建数据仓库?
数据仓库模型的选择是灵活的,不局限与某种模型方法;
数据仓库数据是灵活的,以实际需求场景为导向;
数仓设计要兼顾灵活性、可扩展性、要考虑技术可靠性和实现成本。
1)调研:业务调研、需求调研、数据调研
2)划分主题域:通过业务调研、需求调研、数据调研最终确定主题域
3)构建总线矩阵、维度建模
总线矩阵:把总线架构列表形成矩阵形式,行表示业务处理过程,即事实,列表示一致性的维度,在交叉点上打上标记表示该业务处理过程与该维度相关(交叉探查)
4)设计数仓分层架构
5)模型落地
6)数据治理
4、什么是数据中台?
数据中台是通过数据技术,对海量数据进行采集、计算、存储、加工,同时统一标准和口径。数据中台把数据统一之后,会形成标准数据,再进行存储,形成大数据资产层,进而为客户提供高效服务。
这些服务和企业的业务有较强关联性,是企业所独有且能复用的,他是企业业务和数据的积淀,其不仅能降低重复建设,减少烟囱式协助的成本,也是差异化竞争的优势所在。
数据中台是通过整合公司开发工具、打通全域数据、让数据持续为业务赋能,实现数据平台化、数据服务化和数据价值化。
数据中台更加侧重于“复用”和“业务”。
5、数据中台、数据仓库、大数据平台、数据湖的关键区别是什么?
1) 基础能力上的区别
数据平台:提供的是计算和存储能力
数据仓库:利用数据平台提供的计算和存储能力,在一套方法论的指导下建设的一整套的数据表
数据中台:包含了数据平台和数据仓库的所有内容,将其打包,并且以更加整合以及更加产品化的方式对外提供服务和价值
数据湖:一个存储企业各种各样原始数据的大型仓库,包括结构化和非结构化数据,其中湖里的数据可供存取、处理、分析和传输
2) 业务能力上的区别
数据平台:为业务提供数据主要方式是提供数据集
数据仓库:相对具体的功能概念是存储和管理一个或多个主题数据的集合,为业务提供服务的方式主要是分析报表
数据中台:企业级的逻辑概念,体现企业数据产生价值的能力,为业务提供服务的主要方式是数据API
数据湖:数据仓库的数据来源
总的来说,数据中台距离业务更近,数据复用能力更强,能为业务提供速度更快的服务,数据中台在数据仓库和数据平台的基础上,将数据生产为一个个数据API服务,以更高效的方式提供给业务。数据中台可以建立在数据仓库和数据平台之上,是加速企业从数据到业务价值的过程的中间层。
6、大数据有哪些相关的系统?
数仓设计中心:按照主题域、业务过程,分层的设计方式,以维度建模作为基本理论依据,按照维度、度量设计模型,确保模型、字段有统一的命名规范
数据资产中心:梳理数据资产,基于数据血缘,数据的访问热度,做成本的治理
数据质量中心:通过丰富的稽查监控系统,对数据进行事后校验,确保问题数据第一时间被发现,避免下游的无效计算,分析数据的影响范围。
指标系统:管理指标的业务口径、计算逻辑和数据来源,通过流程化的方式,建立从指标需求、指标开发、指标发布的全套协作流程
数据地图:提供元数据的快速索引,数据字典、数据血缘、数据特征信息的查询,相当于元数据中心的门户。
7、如何建设数据中台?
数据中台在企业落地实践时,结合技术、产品、数据、服务、运营等方面,逐步开展相关工作
1)理现状:了解业务现状、数据现状、IT现状、现有的组织架构
2)定架构:确认业务架构、技术架构、应用架构、组织架构
3)建资产:建立贴近数据层、统一数仓层、标签数据层、应用数据层
4)用数据:对数据进行输出、应用
5)数据运营:持续运营、持续迭代
中台建设需要有全员共识,由管理层从上往下推进,由技术和业务人员去执行和落地是一个漫长的过程,在实施数据中台时,最困难的地方就是需要有人推动。
8、数据仓库最重要的是什么?
个人认为是数据集成和数据质量!
企业的数据通常存储在多个异构数据库中,要进行分析,必须对数据进行一致性整合,整合后才能对数据进行分析挖掘出潜在的价值;
数据质量必须有保障,数据质量不过关,别人怎么会使用你的数据?
9、概念模型、逻辑模型、物理模型分别介绍一下?
1)概念模型CDM:概念模型是最终用户对数据存储的看法,反映了最终用户综合性的信息需求,以数据类的方式描述企业级的数据需求
概念模型的内容包括重要的实体与实体之间的关系,在概念模型中不包含实体的属性,也不包含定义实体的主键
概念模型的目的是统一业务概念,作为业务人员和技术人员之间的沟通桥梁,确定不同实体之间的最高层次的关系
2)逻辑模型LDM:逻辑模型反映的是系统分析人员对数据存储的观点,是对概念模型的进一步分解和细化,逻辑模型是根据业务规则确定的,关于业务对象,业务对象的数据项以及业务对象之间关系的基本蓝图
逻辑模型的内容包括所有的实体和关系,确定每个实体的属性,定义每个实体的主键,指定实体的外键,需要进行范式化处理
逻辑模型的目标是尽可能详细的描述数据,并不考虑物理上如何实现
3)物理模型PDM:物理模型是在逻辑模型的基础上,考虑各种具体的技术实现因素,进行数据体系结构设计,真正实现数据在数据仓库中的存放
物理模型的内容包括确定所有的表和列,定义外键用确认表之间的关系,基于用户的需求可能要进行反范式化等内容
10、SCD常用的处理方式有哪些?
slowly changing dimensions 缓慢变化维度
常见的缓慢变化维处理方式有三种:
1)直接覆盖:不记录历史数据,薪数据覆盖旧数据
2)新加一行数据(纵向扩展):使用代理主键+生效失效时间或者是代理主键+生效失效标识(保存多条记录,直接新添一条记录,同时保留原有记录,并用单独的专用字段保存)
3)新加两个字段(横向扩展):一个是previous,一个是current,每次更新只更新这两个值,但是这样职能保留最近两次的变化(添加历史列,用不同的字段保存变化痕迹,因为只保存两次变化记录,使用与变化不超过两次的维度)
11、怎么理解元数据?
1、业务元数据
描述 '数据'背后的业务含义。
主题定义:每段 ETL、表背后的归属业务主题。
业务描述:每段代码实现的具体业务逻辑。
标准指标:类似于 BI 中的语义层、数仓中的一致性事实;将分析中的指标进行规范化。
标准维度:同标准指标,对分析的各维度定义实现规范化、标准化。
不断的进行维护且与业务方进行沟通确认。
2、技术元数据
数据源元数据:例如:数据源的 IP、端口、数据库类型;数据获取的方式;数据存储的结构;原数据各列的定义及 key 指对应的值。
ETL 元数据:
根据 ETL 目的的不同,可以分为两类:数据清洗元数据;数据处理元数据。
数据清洗,主要目的是为了解决掉脏数据及规范数据格式;因此此处元数据主要为:各表各列的'正确'数据规则;默认数据类型的'正确'规则。
数据处理,例如常见的表输入表输出;非结构化数据结构化;特殊字段的拆分等。源数据到数仓、数据集市层的各类规则。比如内容、清理、数据刷新规则。
数据仓库元数据:
数据仓库结构的描述,包括仓库模式、视图、维、层次结构及数据集市的位置和内容;业务系统、数据仓库和数据集市的体系结构和模式等。
BI 元数据:
汇总用的算法、包括各类度量和维度定义算法。数据粒度、主题领域、聚集、汇总、预定义的查询与报告。
3、管理元数据
管理领域相关,包括管理流程、人员组织、角色职责等。
12、数仓如何确定主题域?
主题是在较高层次上将数据进行综合、归类和分析利用的一个抽象概念,每一个主题基本对应一个宏观的分析领域,在逻辑意义上,他是对企业中某一宏观分析领域所涉及的分析对象。
面向主题的数据组织方式,就是在较高层次上对分析对象的数据的一个完整并且一致的描述,能刻画各个分析对象所涉及的企业各项数据,以及数据之间的联系。
主题域通常是联系较为机密的数据主题的集合,可以根据业务的关注度,将这些数据主题划分到不同的主题域(也就是说对某个主题进行分析后确定的主题的边界)。
关于主题域的划分,可以考虑几方面:
1、按照业务或者业务过程划分:比如一个靠销售广告位置的门户网站主题域可能会有广告域,客户域等,而广告域可能就会有广告的库存,销售分析、内部投放分析等主题;
2、根据需求方划分:比如需求方为财务部,就可以设定对应的财务主题域,而财务主题域里面可能就会有员工工资分析,投资回报比分析等主题;
3、按照功能或者应用划分::比如微信中的朋友圈数据域、群聊数据域等,而朋友圈数据域可能就会有用户动态信息主题、广告主题等;
4、按照部门划分:比如可能会有运营域、技术域等,运营域中可能会有工资支出分析、活动宣传效果分析等主题;
总而言之,切入的出发点逻辑不一样,就可以存在不同的划分逻辑。在建设过程中可采用迭代方式,不纠结于一次完成所有主题的抽象,可先从明确定义的主题开始,后续逐步归纳总结成自身行业的标准模型。
13、如何控制数据质量?
1)校验机制,每天对比数据量,比如count早发现,早修复
2)数据内容的比对,抽样对比
3)复盘、每月做一次全量
14、模型设计的思路?业务驱动?数据驱动?
构建数据仓库有两种方式:自上而下、自下而上
Bill Inmon推崇自上而下的方式(这里的上指的是数据源出发),一个企业建立唯一的数据中心,数据是经过整合、清洗、去掉脏数据、标准的、能够提供统一的视图。要从整个企业的环境入手,建立数据仓库,要做很全面的设计。偏数据驱动
Ralph Kimball推崇自下而上的方式(这里的下指的是从业务需求出发),认为数据仓库应该按照实际的应用需求,架子啊需要的数据,不需要的数据不要加载到数据仓库中。这种方式建设周期短,用户能很快看到结果。偏业务驱动
15、为什么需要数据仓库建模?
数仓建模需要按照一定的数据模型,对整个企业的数据进行采集,整理,提供跨部门、完全一致的报表数据。
合适的数据模型,对于大数据处理来讲,可以获得得更好的性能、成本、效率和质量。良好的模型可以帮助我们快速查询数据,减少不必要的数据冗余,提高用户的使用效率。
数据建模进行全方面的业务梳理,改进业务流程,消灭信息孤岛,更好的推进数仓系统的建设。
16、数据仓库建模方法有哪些?
维度模型
维度建模按数据组织类型划分可分为星型模型、雪花模型、星座模型。
Kimball老爷爷维度建模四个步骤:
选择业务处理过程 > 定义粒度 > 选择维度 > 确定事实
星型模型
星型模型主要是维表和事实表,以事实表为中心,所有维度直接关联在事实表上,呈星型分布。
雪花模型
雪花模型,在星型模型的基础上,维度表上又关联了其他维度表。这种模型维护成本高,性能方面也较差,所以一般不建议使用。尤其是基于hadoop体系构建数仓,减少join就是减少shuffle,性能差距会很大。
星型模型可以理解为,一个事实表关联多个维度表,雪花模型可以理解为一个事实表关联多个维度表,维度表再关联维度表。
星座模型
星座模型,是对星型模型的扩展延伸,多张事实表共享维度表。
星座模型是很多数据仓库的常态,因为很多数据仓库都是多个事实表的。所以星座模型只反映是否有多个事实表,他们之间是否共享一些维度表。
范式模型
即实体关系(ER)模型,数据仓库之父Immon提出的,从全企业的高度设计一个3NF模型,用实体加关系描述的数据模型描述企业业务架构,在范式理论上符合3NF。此建模方法,对建模人员的能力要求非常高。
特点:设计思路自上而下,适合上游基础数据存储,同一份数据只存储一份,没有数据冗余,方便解耦,易维护,缺点是开发周期一般比较长,维护成本高。
Data Vault模型
DataVault由Hub(关键核心业务实体)、Link(关系)、Satellite(实体属性) 三部分组成 ,是Dan Linstedt发起创建的一种模型方法论,它是在ER关系模型上的衍生,同时设计的出发点也是为了实现数据的整合,并非为数据决策分析直接使用。
Anchor模型
高度可扩展的模型,所有的扩展只是添加而不是修改,因此它将模型规范到6NF,基本变成了K-V结构模型。企业很少使用。
17、数仓架构为什么要分层?
分层可以清晰数据结构,使用时更好的定位和理解
方便追踪数据的血缘关系
规范数据分层,可以开发一些通用的中间层数据,能够减少极大的重复计算
把复杂的问题简单化
屏蔽原始数据的异常,下游任务没有感知异常
转载自:全栈云技术架构
相关文章:
干货:数据仓库基础知识(全)
1、什么是数据仓库? 权威定义:数据仓库是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合,用于支持管理决策。 1)数据仓库是用于支持决策、面向分析型数据处理; 2)对多个异构的数据源有效集…...
二分搜索简介
概念: 二分搜索算法(Binary Search)是一种高效的搜索算法,用于在有序数组中查找特定元素的位置。它的基本思想是将数组分为两部分,通过比较目标值与数组中间元素的大小关系,确定目标值可能存在的区间&…...
虚拟车衣VR云展厅平台扩大了展览的触达范围
传统展厅主要是以静态陈列的形式来传达内容,主要的展示形式有图片、视频等,具有一定的局限性,体验感较差,客户往往不能深入地了解信息和细节内容。 VR全景看车是通过虚拟现实技术实现逼真的汽车观赏和试乘体验。消费者可以通过智能…...
云部署家里的服务器
1.固定静态ip 查看ip地址,en开头的 ifconfig查看路由器ip,via开头的 ip route修改配置文件 cd /etc/netplan/ #来到这个文件夹 sudo cp 01-network-manager-all.yaml 01-network-manager-all.yaml.bak #先备…...
【利用冒泡排序的思想模拟实现qsort函数】
1.qsort函数 1.1qsort函数的介绍 资源来源于cplusplus网站 1.2qsort函数的主要功能 对数组的元素进行排序 对数组中由 指向的元素进行排序,每个元素字节长,使用该函数确定顺序。 此函数使用的排序算法通过调用指定的函数来比较元素对,并将指…...
[plugin:vite:css] [sass] Undefined mixin.
前言: vite vue3 TypeScript环境 scss报错: [plugin:vite:css] [sass] Undefined mixin. 解决方案: 在vite.config.ts文件添加配置 css: {preprocessorOptions: {// 导入scss预编译程序scss: {additionalData: use "/resources/_ha…...
【论文阅读】大语言模型中的文化道德规范知识
摘要: 在已有的研究中,我们知道英语语言模型中包含了类人的道德偏见,但从未有研究去检测语言模型对不同国家文化的道德差异。 我们分析了语言模型包含不同国家文化道德规范的程度,主要针对两个方面,其一是看语言模型…...
51单片机实训项目之产品数量计数器
/********************************************************************************* * 【实验平台】: QX-MCS51 单片机开发板 * 【外部晶振】: 11.0592mhz * 【主控芯片】: STC89C52 * 【编译环境】: Keil μVisio3 * 【程序…...
Scala第七章节
Scala第七章节 scala总目录 章节目标 掌握继承和抽象类相关知识点掌握匿名内部类的用法了解类型转换的内容掌握动物类案例 1. 继承 1.1 概述 实际开发中, 我们发现好多类中的内容是相似的(例如: 相似的属性和行为), 每次写很麻烦. 于是我们可以把这些相似的内容提取出来单…...
C语言进程的相关操作
C语言进程的相关操作 进程简介 每个进程都有一个非负整数形式到的唯一编号,即PID(Process Identification,进程标识)PID在任何时刻都是唯一的,但是可以重用,当进程终止并被回收以后,其PID就可…...
数据结构学习系列之链式栈
链式栈:即:栈的链式存储结构;分析:为了提高程序的运算效率,应采用头插法和头删法;进栈: int push_link_stack(stack_t *link_stack,int data) {if(NULL link_stack){printf("入参合理性检…...
too many session files in /var/tmp
Linux中Too many open files 问题分析和解决_e929: too many viminfo temp files-CSDN博客...
【7.0】打开未知来源安装应用
默认打开未知来源安装应用 frameworks\base\packages\SettingsProvider\res\values\defaults.xml <bool name"def_install_non_market_apps">false</bool>...
安装ipfs-swarm-key-gen
安装ipfs-swarm-key-gen Linux安装go解释器安装ipfs-swarm-key-gen Linux安装go解释器 https://blog.csdn.net/omaidb/article/details/133180749 安装ipfs-swarm-key-gen # 编译ipfs-swarm-key-gen二进制文件 go get -u github.com/Kubuxu/go-ipfs-swarm-key-gen/ipfs-swarm…...
BASH shell脚本篇5——文件处理
这篇文章介绍下BASH shell中的文件处理。之前有介绍过shell的其它命令,请参考: BASH shell脚本篇1——基本命令 BASH shell脚本篇2——条件命令 BASH shell脚本篇3——字符串处理 BASH shell脚本篇4——函数 在Bash Shell脚本中,可以使用…...
ElementUI之首页导航及左侧菜单(模拟实现)
目录 编辑 前言 一、mockjs简介 1. 什么是mockjs 2. mockjs的用途 3. 运用mockjs的优势 二、安装与配置mockjs 1. 安装mockjs 2. 引入mockjs 2.1 dev.env.js 2.2 prod.env.js 2.3 main.js 三、mockjs的使用 1. 将资源中的mock文件夹复制到src目录下 2. 点击登…...
Java开源工具库使用之Lombok
文章目录 前言一、常用注解1.1 AllArgsConstructor/NoArgsConstructor/RequiredArgsConstructor1.2 Builder1.3 Data1.4 EqualsAndHashCode1.5 Getter/Setter1.6 Slf4j/Log4j/Log4j2/Log1.7 ToString 二、踩坑2.1 Getter/Setter 方法名不一样2.2 Builder 不会生成无参构造方法2…...
uboot启动流程涉及reset函数
一. uboot启动流程中函数 之前了解了uboot链接脚本文件 u-boot.lds。 从 u-boot.lds 中我们已经知道了入口点是 arch/arm/lib/vectors.S 文件中的 _start。 本文了解 一下,uboot启动过程中涉及的 reset 函数。本文继上一篇文章学习,地址如下ÿ…...
端口被占用怎么解决
第一步:WinR 打开命令提示符,输入netstat -ano|findstr 端口号 找到占用端口的进程 第二步: 杀死使用该端口的进程,输入taskkill /t /f /im 进程号( !!!注意是进程号,不…...
python reportlab 生成多页pdf
多页 from reportlab.pdfgen import canvas from reportlab.platypus import (SimpleDocTemplate, Paragraph, PageBreak, Image, Spacer, Table, TableStyle) from reportlab.lib.enums import TA_LEFT, TA_RIGHT, TA_CENTER, TA_JUSTIFY from reportlab.lib.styles import P…...
word 多级目录的问题
一、多级标题自动编号 --> 制表符 -> 空格 网址: 【Word技巧】2 标题自动编号——将多级列表链接到样式 - YouTube 二、多级列表 --> 正规形式编号 网址:Word 教学 - 定框架:文档格式与多级标题! - YouTube 三、目…...
python使用mitmproxy和mitmdump抓包之拦截和修改包(四)
我认为mitmproxy最强大的地方,就是mitmdump可以结合python代理,灵活拦截和处理数据包。 首先,mitmdump的路径如下:(使用pip3 install mitmproxy安装的情况,参考我的文章python使用mitmproxy和mitmdump抓包…...
邓俊辉《数据结构》→ “2.6.5 二分查找(版本A)”之“成功查找长度”递推式推导
【问题描述】 邓俊辉的《数据结构(C语言版)(第3版)》(ISBN:9787302330646)中,开始于第48页的“2.6.5 二分查找(版本A)”内容在第50页详述了“成功查找长度”的…...
Linux文件查找,别名,用户组综合练习
1.文件查看: 查看/etc/passwd文件的第5行 [rootserver ~]# head -5 /etc/passwd root:x:0:0:root:/root:/bin/bash bin:x:1:1:bin:/bin:/sbin/nologin daemon:x:2:2:daemon:/sbin:/sbin/nologin adm:x:3:4:adm:/var/adm:/sbin/nologin lp:x:4:7:lp:/var/spool/lpd:/sbin/nologi…...
【MATLAB第77期】基于MATLAB代理模型算法的降维/特征排序/数据处理回归/分类问题MATLAB代码实现【更新中】
【MATLAB第77期】基于MATLAB代理模型算法的降维/特征排序/数据处理回归/分类问题MATLAB代码实现 本文介绍基于libsvm代理模型算法的特征排序方法合集,包括: 1.基于每个特征预测精度进行排序(libsvm代理模型) 2.基于相关系数corr的…...
第三章 图标辅助元素的定制
第三章 图标辅助元素的定制 1.认识图表常用的辅助元素 图表的辅助元素是指除了根据数据绘制的图形之外的元素,常用的辅助元素包括坐标轴、标题、图例、网格、参考线、参考区域、注释文本和表格,它们都可以对图形进行补充说明。 上图中图表常用辅…...
【前端】ECMAScript6从入门到进阶
【前端】ECMAScript6从入门到进阶 1.ES6简介及环境搭建 1.1.ECMAScript 6简介 (1)ECMAScript 6是什么 ECMAScript 6.0(以下简称 ES6)是 JavaScript 语言的下一代标准,已经在2015年6月正式发布了。它的目标ÿ…...
Android Shape设置背景
设置背景时,经常这样 android:background“drawable/xxx” 。如果是纯色图片,可以考虑用 shape 替代。 shape 相比图片,减少资源占用,缩减APK体积。 开始使用。 <?xml version"1.0" encoding"utf-8"?…...
什么是GraphQL?它与传统的REST API有什么不同?
聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 什么是GraphQL?⭐ 与传统的REST API 的不同⭐ 写在最后 ⭐ 专栏简介 前端入门之旅:探索Web开发的奇妙世界 欢迎来到前端入门之旅!感兴趣的可以订阅本专栏哦!这个专栏是为那些对Web开发感兴趣…...
如何定时备份使用Docker构建的MySQL容器中的数据库
👨🏻💻 热爱摄影的程序员 👨🏻🎨 喜欢编码的设计师 🧕🏻 擅长设计的剪辑师 🧑🏻🏫 一位高冷无情的编码爱好者 大家好,我是 DevO…...
会搭建网站找什么工作室/谷歌seo综合查询
http://blog.csdn.net/smartempire/article/details/23168945 看关于LBP人脸识别的论文时提到了Histogram intersection这个方法,方法最初来自The Pyramid Match Kernel:Discriminative Classification with Sets of Image Features这篇论文,用来对特征构…...
黄页网站推广app软件/涟源网站seo
http://www.cnblogs.com/tianzhiliang/archive/2011/01/06/1927691.html...
Dedecms 手机网站示例/百度的广告推广需要多少费用
几种破解mysql root密码的几种方法: 方法一 使用phpmyadmin,这是最简单的了,修改mysql库的user表,不过别忘了使用PASSWORD函数。 方法二 使用mysqladmin,这是前面声明的一个特例。 mysqladmin -u root -p password mypasswd 输入。…...
wordpress 不显示分类目录/seo网站优化培训班
榜单解读: 2021年全国31个地区共新开业1106家影院,其中2021年2月开业影院数最多,有219家,此外2021年1月、9月、12月这3个月度影院开业数均超过100家。疫情冲击对影院影响较大,据悉,2020年全国关闭影院800家…...
免费个人网站制作在线/谷歌关键词分析工具
1.为驳回编译器自动生成函数的技能,可把这些函数的声明放入private,如果是继承类型可把base class的这些函数声明private,可在编译期间得到警告转载于:https://www.cnblogs.com/xuaidongstdudyrecording/p/7259169.html...